L11n256

From Knot Atlas
Jump to: navigation, search

L11n255.gif

L11n255

L11n257.gif

L11n257

Contents

L11n256.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n256 at Knotilus!


Link Presentations

[edit Notes on L11n256's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X16,12,17,11 X18,22,19,21 X20,14,21,13 X12,20,13,19 X22,18,9,17 X15,8,16,5 X7,14,8,15 X2536 X9,1,10,4
Gauss code {1, -10, -2, 11}, {10, -1, -9, 8}, {-11, 2, 3, -6, 5, 9, -8, -3, 7, -4, 6, -5, 4, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n256 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(1) t(3)^3-2 t(1) t(3)^2-t(1) t(2) t(3)^2-t(2) t(3)^2-t(3)^2+t(1) t(3)+t(1) t(2) t(3)+2 t(2) t(3)+t(3)-2 t(2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial -q^7+q^6-q^5-q^4+2 q^3+ q^{-3} -q^2- q^{-2} +4 q+3 q^{-1} -2 (db)
Signature 2 (db)
HOMFLY-PT polynomial -z^4 a^{-2} +z^4 a^{-4} -z^4+a^2 z^2-3 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} -3 z^2+2 a^2-3 a^{-2} +6 a^{-4} -2 a^{-6} -3+a^2 z^{-2} -2 a^{-2} z^{-2} +3 a^{-4} z^{-2} - a^{-6} z^{-2} - z^{-2} (db)
Kauffman polynomial z^7 a^{-7} -6 z^5 a^{-7} +10 z^3 a^{-7} -7 z a^{-7} +2 a^{-7} z^{-1} +z^8 a^{-6} -6 z^6 a^{-6} +8 z^4 a^{-6} -2 z^2 a^{-6} - a^{-6} z^{-2} + a^{-6} +2 z^7 a^{-5} -16 z^5 a^{-5} +35 z^3 a^{-5} -27 z a^{-5} +8 a^{-5} z^{-1} +z^8 a^{-4} -7 z^6 a^{-4} +12 z^4 a^{-4} -7 z^2 a^{-4} -3 a^{-4} z^{-2} +5 a^{-4} +3 z^7 a^{-3} -21 z^5 a^{-3} +44 z^3 a^{-3} -34 z a^{-3} +10 a^{-3} z^{-1} +z^8 a^{-2} +a^2 z^6-5 z^6 a^{-2} -5 a^2 z^4+8 z^4 a^{-2} +7 a^2 z^2-8 z^2 a^{-2} +a^2 z^{-2} -2 a^{-2} z^{-2} -4 a^2+4 a^{-2} +a z^7+3 z^7 a^{-1} -3 a z^5-14 z^5 a^{-1} -a z^3+18 z^3 a^{-1} +4 a z-10 z a^{-1} -2 a z^{-1} +2 a^{-1} z^{-1} +z^8-3 z^6-z^4+4 z^2+ z^{-2} -3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
15           1-1
13            0
11         11 0
9       31   -2
7      111   1
5     241    1
3    311     3
1   251      2
-1  111       1
-3  2         2
-511          0
-71           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n255.gif

L11n255

L11n257.gif

L11n257