L11n259

From Knot Atlas
Jump to: navigation, search

L11n258.gif

L11n258

L11n260.gif

L11n260

Contents

L11n259.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n259 at Knotilus!


Link Presentations

[edit Notes on L11n259's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,18,12,19 X22,20,9,19 X20,16,21,15 X16,22,17,21 X17,12,18,13 X2536 X9,1,10,4
Gauss code {1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, -5, 9, -4, 3, 7, -8, -9, 5, 6, -7, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n259 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v w^3-2 u v w^2+u v w-u v-u w^3+2 u w^2-2 u w+u-v w^3+2 v w^2-2 v w+v+w^3-w^2+2 w-1}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial -q^6+4 q^5-6 q^4+8 q^3-7 q^2- q^{-2} +8 q+4 q^{-1} -5 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +3 z^4 a^{-2} -z^4 a^{-4} -z^4+z^2 a^{-2} -z^2 a^{-4} -z^2-3 a^{-2} + a^{-4} +2-2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} (db)
Kauffman polynomial z^3 a^{-7} +4 z^4 a^{-6} -z^2 a^{-6} +z^7 a^{-5} +2 z^5 a^{-5} +z^8 a^{-4} +2 z^6 a^{-4} -z^4 a^{-4} -3 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +5 z^7 a^{-3} -6 z^5 a^{-3} +z^3 a^{-3} -3 z a^{-3} +2 a^{-3} z^{-1} +z^8 a^{-2} +6 z^6 a^{-2} -14 z^4 a^{-2} +z^2 a^{-2} -2 a^{-2} z^{-2} +5 a^{-2} +4 z^7 a^{-1} +a z^5-7 z^5 a^{-1} -a z^3+z^3 a^{-1} -3 z a^{-1} +2 a^{-1} z^{-1} +4 z^6-9 z^4+3 z^2- z^{-2} +3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345χ
13        1-1
11       3 3
9      42 -2
7     42  2
5    34   1
3   54    1
1  36     3
-1 12      -1
-3 3       3
-51        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n258.gif

L11n258

L11n260.gif

L11n260