L11n264

From Knot Atlas
Jump to: navigation, search

L11n263.gif

L11n263

L11n265.gif

L11n265

Contents

L11n264.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n264 at Knotilus!


Link Presentations

[edit Notes on L11n264's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X18,12,19,11 X19,22,20,9 X15,20,16,21 X21,16,22,17 X12,18,13,17 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, 5, -9, 4, -3, -7, 8, 9, -5, -6, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n264 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{-t(1) t(3)^3+t(1) t(2) t(3)^3-t(2) t(3)^3+t(3)^3+t(1) t(3)^2-2 t(1) t(2) t(3)^2+t(2) t(3)^2-t(3)^2-t(1) t(3)+t(1) t(2) t(3)-t(2) t(3)+2 t(3)+t(1)-t(1) t(2)+t(2)-1}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial 1-3 q^{-1} +5 q^{-2} -5 q^{-3} +7 q^{-4} -5 q^{-5} +6 q^{-6} -3 q^{-7} + q^{-8} (db)
Signature -4 (db)
HOMFLY-PT polynomial a^8 z^{-2} +z^4 a^6+z^2 a^6-2 a^6 z^{-2} -3 a^6-z^6 a^4-3 z^4 a^4+a^4 z^{-2} +3 a^4+z^4 a^2+2 z^2 a^2 (db)
Kauffman polynomial 2 a^9 z^3+a^8 z^8-5 a^8 z^6+11 a^8 z^4-6 a^8 z^2-a^8 z^{-2} +3 a^8+a^7 z^9-3 a^7 z^7+2 a^7 z^5+3 a^7 z^3-3 a^7 z+2 a^7 z^{-1} +4 a^6 z^8-16 a^6 z^6+22 a^6 z^4-14 a^6 z^2-2 a^6 z^{-2} +5 a^6+a^5 z^9-8 a^5 z^5+7 a^5 z^3-3 a^5 z+2 a^5 z^{-1} +3 a^4 z^8-10 a^4 z^6+8 a^4 z^4-6 a^4 z^2-a^4 z^{-2} +3 a^4+3 a^3 z^7-10 a^3 z^5+6 a^3 z^3+a^2 z^6-3 a^2 z^4+2 a^2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
1        11
-1       2 -2
-3      31 2
-5     33  0
-7    42   2
-9  123    2
-11  54     1
-13 14      3
-15 2       -2
-171        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{5} {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n263.gif

L11n263

L11n265.gif

L11n265