L11n287

From Knot Atlas
Jump to: navigation, search

L11n286.gif

L11n286

L11n288.gif

L11n288

Contents

L11n287.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n287 at Knotilus!


Link Presentations

[edit Notes on L11n287's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X8493 X2,14,3,13 X14,7,15,8 X4,15,1,16 X21,18,22,19 X9,21,10,20 X19,5,20,10 X11,16,12,17 X17,22,18,11
Gauss code {1, -4, 3, -6}, {-2, -1, 5, -3, -8, 9}, {-10, 2, 4, -5, 6, 10, -11, 7, -9, 8, -7, 11}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n287 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1)}{\sqrt{u} \sqrt{v} \sqrt{w}} (db)
Jones polynomial q^2+2- q^{-1} +3 q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} +2 q^{-6} - q^{-7} (db)
Signature 0 (db)
HOMFLY-PT polynomial a^6 \left(-z^2\right)-a^6+a^4 z^4+3 a^4 z^2+2 a^4-a^2 z^2+a^2 z^{-2} + a^{-2} z^{-2} + a^{-2} -z^2-2 z^{-2} -2 (db)
Kauffman polynomial a^5 z^9+a^3 z^9+2 a^6 z^8+3 a^4 z^8+a^2 z^8+a^7 z^7-4 a^5 z^7-5 a^3 z^7-11 a^6 z^6-17 a^4 z^6-6 a^2 z^6-5 a^7 z^5+6 a^3 z^5+a z^5+16 a^6 z^4+28 a^4 z^4+12 a^2 z^4+6 a^7 z^3+8 a^5 z^3-2 a^3 z^3-4 a z^3-7 a^6 z^2-18 a^4 z^2-10 a^2 z^2+z^2 a^{-2} +2 z^2-2 a^7 z-4 a^5 z+4 a z+2 z a^{-1} +2 a^6+4 a^4-2 a^{-2} -3-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
5         11
3         11
1       31 2
-1      241 1
-3     222  2
-5    23    1
-7   121    0
-9  121     0
-11 11       0
-13 1        1
-151         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1 i=1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2} {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z} {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n286.gif

L11n286

L11n288.gif

L11n288