From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n289 at Knotilus!

Link Presentations

[edit Notes on L11n289's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X3849 X2,14,3,13 X14,7,15,8 X11,18,12,19 X9,21,10,20 X19,5,20,10 X15,1,16,4 X17,22,18,11 X21,16,22,17
Gauss code {1, -4, -3, 9}, {-2, -1, 5, 3, -7, 8}, {-6, 2, 4, -5, -9, 11, -10, 6, -8, 7, -11, 10}
A Braid Representative
A Morse Link Presentation L11n289 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v w^4-2 u v w^3+2 u v w^2-2 u v w-u w^4+u w^3-u w^2+u w-v^2 w^3+v^2 w^2-v^2 w+v^2+2 v w^3-2 v w^2+2 v w-v}{\sqrt{u} v w^2} (db)
Jones polynomial 2 q-2+6 q^{-1} -6 q^{-2} +8 q^{-3} -7 q^{-4} +6 q^{-5} -4 q^{-6} +2 q^{-7} - q^{-8} (db)
Signature -2 (db)
HOMFLY-PT polynomial -z^4 a^6-3 z^2 a^6-a^6 z^{-2} -3 a^6+z^6 a^4+5 z^4 a^4+11 z^2 a^4+4 a^4 z^{-2} +11 a^4-3 z^4 a^2-11 z^2 a^2-5 a^2 z^{-2} -13 a^2+2 z^2+2 z^{-2} +5 (db)
Kauffman polynomial z^5 a^9-3 z^3 a^9+z a^9+2 z^6 a^8-5 z^4 a^8+z^2 a^8+3 z^7 a^7-9 z^5 a^7+8 z^3 a^7-4 z a^7+a^7 z^{-1} +3 z^8 a^6-11 z^6 a^6+17 z^4 a^6-12 z^2 a^6-a^6 z^{-2} +5 a^6+z^9 a^5+z^7 a^5-14 z^5 a^5+31 z^3 a^5-21 z a^5+5 a^5 z^{-1} +5 z^8 a^4-23 z^6 a^4+47 z^4 a^4-40 z^2 a^4-4 a^4 z^{-2} +18 a^4+z^9 a^3-z^7 a^3-7 z^5 a^3+28 z^3 a^3-29 z a^3+9 a^3 z^{-1} +2 z^8 a^2-10 z^6 a^2+28 z^4 a^2-37 z^2 a^2-5 a^2 z^{-2} +21 a^2+z^7 a-3 z^5 a+8 z^3 a-13 z a+5 a z^{-1} +3 z^4-10 z^2-2 z^{-2} +9 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
3         22
1        110
-1       51 4
-3      33  0
-5     53   2
-7    34    1
-9   34     -1
-11  13      2
-13 13       -2
-15 1        1
-171         -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.