L11n340

From Knot Atlas
Jump to: navigation, search

L11n339.gif

L11n339

L11n341.gif

L11n341

Contents

L11n340.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n340 at Knotilus!


Link Presentations

[edit Notes on L11n340's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X18,12,19,11 X7,14,8,15 X13,8,14,9 X22,20,13,19 X20,16,21,15 X16,22,17,21 X12,18,5,17 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, -4, 5, 11, -2, 3, -9}, {-5, 4, 7, -8, 9, -3, 6, -7, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n340 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(v-1) (w-1) \left(-u v w^2+2 u v w-u v-u w+v^2 w+v w^2-2 v w+v\right)}{\sqrt{u} v^{3/2} w^{3/2}} (db)
Jones polynomial -q^5+3 q^4-7 q^3+11 q^2-13 q+14-12 q^{-1} +11 q^{-2} -5 q^{-3} +3 q^{-4} (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^2 a^{-4} +2 a^4 z^{-2} +2 a^4- a^{-4} +a^2 z^4+2 z^4 a^{-2} -2 a^2 z^2+3 z^2 a^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} -7 a^2+ a^{-2} -z^6-2 z^4+4 z^{-2} +5 (db)
Kauffman polynomial z^5 a^{-5} -2 z^3 a^{-5} +z a^{-5} +3 z^6 a^{-4} +6 a^4 z^4-5 z^4 a^{-4} -13 a^4 z^2+3 z^2 a^{-4} -2 a^4 z^{-2} +9 a^4- a^{-4} +3 a^3 z^7+5 z^7 a^{-3} -6 a^3 z^5-8 z^5 a^{-3} +14 a^3 z^3+5 z^3 a^{-3} -16 a^3 z-3 z a^{-3} +5 a^3 z^{-1} + a^{-3} z^{-1} +4 a^2 z^8+4 z^8 a^{-2} -8 a^2 z^6+18 a^2 z^4-10 z^4 a^{-2} -26 a^2 z^2+6 z^2 a^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} +18 a^2+a z^9+z^9 a^{-1} +11 a z^7+13 z^7 a^{-1} -32 a z^5-35 z^5 a^{-1} +43 a z^3+36 z^3 a^{-1} -32 a z-20 z a^{-1} +9 a z^{-1} +5 a^{-1} z^{-1} +8 z^8-11 z^6+7 z^4-10 z^2-4 z^{-2} +11 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
11         1-1
9        2 2
7       51 -4
5      62  4
3     75   -2
1    76    1
-1   79     2
-3  45      -1
-5 17       6
-724        -2
-93         3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-4 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n339.gif

L11n339

L11n341.gif

L11n341