L11n353

From Knot Atlas
Jump to: navigation, search

L11n352.gif

L11n352

L11n354.gif

L11n354

Contents

L11n353.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n353 at Knotilus!


Link Presentations

[edit Notes on L11n353's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X5,16,6,17 X8493 X9,21,10,20 X19,11,20,10 X17,22,18,15 X21,18,22,19 X15,14,16,5 X2,12,3,11
Gauss code {1, -11, 5, -3}, {-10, 4, -8, 9, -7, 6, -9, 8}, {-4, -1, 2, -5, -6, 7, 11, -2, 3, 10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n353 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1)^3}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial -2 q^{-6} +5 q^{-5} -8 q^{-4} +q^3+11 q^{-3} -2 q^2-10 q^{-2} +6 q+11 q^{-1} -8 (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^6-a^4 z^4+a^4+a^2 z^6+3 a^2 z^4+4 a^2 z^2+a^2 z^{-2} +z^2 a^{-2} + a^{-2} z^{-2} +3 a^2+2 a^{-2} -2 z^4-5 z^2-2 z^{-2} -5 (db)
Kauffman polynomial a^3 z^9+a z^9+3 a^4 z^8+5 a^2 z^8+2 z^8+3 a^5 z^7+5 a^3 z^7+4 a z^7+2 z^7 a^{-1} +a^6 z^6-2 a^4 z^6-4 a^2 z^6+z^6 a^{-2} -2 a^5 z^5-8 a^3 z^5-11 a z^5-5 z^5 a^{-1} +4 a^6 z^4+3 a^4 z^4-11 a^2 z^4-4 z^4 a^{-2} -14 z^4+3 a^7 z^3+5 a^5 z^3-2 a^3 z^3-2 a z^3+2 z^3 a^{-1} -3 a^6 z^2-5 a^4 z^2+11 a^2 z^2+6 z^2 a^{-2} +19 z^2-2 a^7 z-3 a^5 z+3 a^3 z+7 a z+3 z a^{-1} +2 a^6+2 a^4-6 a^2-4 a^{-2} -9-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        1 -1
3       51 4
1      31  -2
-1     85   3
-3    67    1
-5   54     1
-7  36      3
-9 25       -3
-11 3        3
-132         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n352.gif

L11n352

L11n354.gif

L11n354