L11n38

From Knot Atlas
Jump to: navigation, search

L11n37.gif

L11n37

L11n39.gif

L11n39

Contents

L11n38.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n38 at Knotilus!


Link Presentations

[edit Notes on L11n38's Link Presentations]

Planar diagram presentation X6172 X20,7,21,8 X4,21,1,22 X5,12,6,13 X3849 X9,16,10,17 X13,19,14,18 X17,15,18,14 X15,10,16,11 X11,22,12,5 X19,2,20,3
Gauss code {1, 11, -5, -3}, {-4, -1, 2, 5, -6, 9, -10, 4, -7, 8, -9, 6, -8, 7, -11, -2, 3, 10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n38 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^5-4 u v^4+3 u v^3-u v^2-v^3+3 v^2-4 v+1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{4}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{6}{q^{13/2}}+\frac{4}{q^{15/2}}-\frac{2}{q^{17/2}}+\frac{1}{q^{19/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^{11} z^{-1} +a^9 z^3+5 a^9 z+3 a^9 z^{-1} -2 a^7 z^5-9 a^7 z^3-10 a^7 z-3 a^7 z^{-1} +a^5 z^7+5 a^5 z^5+8 a^5 z^3+7 a^5 z+2 a^5 z^{-1} -a^3 z^5-4 a^3 z^3-4 a^3 z-a^3 z^{-1} (db)
Kauffman polynomial a^{12} z^2-a^{12}+2 a^{11} z^3-2 a^{11} z+a^{11} z^{-1} +a^{10} z^6-2 a^{10} z^4+4 a^{10} z^2-2 a^{10}+3 a^9 z^7-12 a^9 z^5+18 a^9 z^3-11 a^9 z+3 a^9 z^{-1} +3 a^8 z^8-11 a^8 z^6+11 a^8 z^4-4 a^8 z^2+a^7 z^9+2 a^7 z^7-22 a^7 z^5+32 a^7 z^3-16 a^7 z+3 a^7 z^{-1} +5 a^6 z^8-21 a^6 z^6+24 a^6 z^4-11 a^6 z^2+2 a^6+a^5 z^9-15 a^5 z^5+24 a^5 z^3-12 a^5 z+2 a^5 z^{-1} +2 a^4 z^8-9 a^4 z^6+11 a^4 z^4-4 a^4 z^2+a^3 z^7-5 a^3 z^5+8 a^3 z^3-5 a^3 z+a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
0         11
-2        1 -1
-4       31 2
-6      32  -1
-8     32   1
-10   133    1
-12   43     1
-14  13      2
-16 13       -2
-18 1        1
-201         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4} {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n37.gif

L11n37

L11n39.gif

L11n39