L11n380

From Knot Atlas
Jump to: navigation, search

L11n379.gif

L11n379

L11n381.gif

L11n381

Contents

L11n380.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n380 at Knotilus!


Link Presentations

[edit Notes on L11n380's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X8493 X17,22,18,19 X11,20,12,21 X19,12,20,13 X21,18,22,5 X9,16,10,17 X2,14,3,13
Gauss code {1, -11, 5, -3}, {-8, 7, -9, 6}, {-4, -1, 2, -5, -10, 4, -7, 8, 11, -2, 3, 10, -6, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n380 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (w-1)^2 (v+w)}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial - q^{-10} +2 q^{-9} -4 q^{-8} +5 q^{-7} -4 q^{-6} +6 q^{-5} -4 q^{-4} +4 q^{-3} - q^{-2} + q^{-1} (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^{10} z^{-2} -a^{10}+3 z^2 a^8+4 a^8 z^{-2} +6 a^8-2 z^4 a^6-7 z^2 a^6-5 a^6 z^{-2} -10 a^6+3 z^2 a^4+2 a^4 z^{-2} +4 a^4+z^2 a^2+a^2 (db)
Kauffman polynomial z^7 a^{11}-5 z^5 a^{11}+8 z^3 a^{11}-5 z a^{11}+a^{11} z^{-1} +2 z^8 a^{10}-9 z^6 a^{10}+11 z^4 a^{10}-6 z^2 a^{10}-a^{10} z^{-2} +3 a^{10}+z^9 a^9-17 z^5 a^9+31 z^3 a^9-20 z a^9+5 a^9 z^{-1} +5 z^8 a^8-23 z^6 a^8+31 z^4 a^8-21 z^2 a^8-4 a^8 z^{-2} +13 a^8+z^9 a^7+z^7 a^7-21 z^5 a^7+39 z^3 a^7-30 z a^7+9 a^7 z^{-1} +3 z^8 a^6-14 z^6 a^6+23 z^4 a^6-23 z^2 a^6-5 a^6 z^{-2} +16 a^6+2 z^7 a^5-9 z^5 a^5+17 z^3 a^5-15 z a^5+5 a^5 z^{-1} +3 z^4 a^4-7 z^2 a^4-2 a^4 z^{-2} +6 a^4+z^3 a^3+z^2 a^2-a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-1         11
-3        220
-5       2 13
-7      33  0
-9     42   2
-11    251   2
-13   331    1
-15  12      1
-17 13       -2
-19 1        1
-211         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z} {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n379.gif

L11n379

L11n381.gif

L11n381