L11n391

From Knot Atlas
Jump to: navigation, search

L11n390.gif

L11n390

L11n392.gif

L11n392

Contents

L11n391.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n391 at Knotilus!


Link Presentations

[edit Notes on L11n391's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X8493 X13,22,14,19 X9,20,10,21 X19,10,20,11 X21,14,22,15 X11,18,12,5 X2,16,3,15
Gauss code {1, -11, 5, -3}, {-8, 7, -9, 6}, {-4, -1, 2, -5, -7, 8, -10, 4, -6, 9, 11, -2, 3, 10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n391 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (w-1)^2 (v w+1)}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial 1-3 q^{-1} +6 q^{-2} -5 q^{-3} +7 q^{-4} -5 q^{-5} +5 q^{-6} -2 q^{-7} + q^{-9} - q^{-10} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{10} z^{-2} -a^{10}+2 a^8 z^2+4 a^8 z^{-2} +6 a^8-4 a^6 z^2-5 a^6 z^{-2} -10 a^6-a^4 z^6-3 a^4 z^4+2 a^4 z^{-2} +4 a^4+a^2 z^4+2 a^2 z^2+a^2 (db)
Kauffman polynomial a^{11} z^7-6 a^{11} z^5+9 a^{11} z^3-5 a^{11} z+a^{11} z^{-1} +a^{10} z^8-7 a^{10} z^6+12 a^{10} z^4-8 a^{10} z^2-a^{10} z^{-2} +3 a^{10}+a^9 z^7-12 a^9 z^5+29 a^9 z^3-20 a^9 z+5 a^9 z^{-1} +2 a^8 z^8-15 a^8 z^6+33 a^8 z^4-25 a^8 z^2-4 a^8 z^{-2} +13 a^8+a^7 z^9-2 a^7 z^7-11 a^7 z^5+35 a^7 z^3-30 a^7 z+9 a^7 z^{-1} +4 a^6 z^8-17 a^6 z^6+25 a^6 z^4-23 a^6 z^2-5 a^6 z^{-2} +16 a^6+a^5 z^9+a^5 z^7-14 a^5 z^5+19 a^5 z^3-15 a^5 z+5 a^5 z^{-1} +3 a^4 z^8-8 a^4 z^6+a^4 z^4-3 a^4 z^2-2 a^4 z^{-2} +6 a^4+3 a^3 z^7-9 a^3 z^5+4 a^3 z^3+a^2 z^6-3 a^2 z^4+3 a^2 z^2-a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1          2 -2
-3         41 3
-5        34  1
-7      152   2
-9     123    2
-11    165     0
-13   113      3
-15   13       -2
-17 111        1
-19            0
-211           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{6} {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n390.gif

L11n390

L11n392.gif

L11n392