L11n393

From Knot Atlas
Jump to: navigation, search

L11n392.gif

L11n392

L11n394.gif

L11n394

Contents

L11n393.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n393 at Knotilus!


Link Presentations

[edit Notes on L11n393's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X8493 X13,22,14,19 X9,20,10,21 X19,10,20,11 X21,14,22,15 X18,12,5,11 X2,16,3,15
Gauss code {1, -11, 5, -3}, {-8, 7, -9, 6}, {4, -1, 2, -5, -7, 8, 10, -4, -6, 9, 11, -2, 3, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n393 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(3)-1)^2 \left(t(3)^3+t(2)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} (db)
Jones polynomial - q^{-7} +3 q^{-6} -4 q^{-5} +7 q^{-4} +q^3-5 q^{-3} -q^2+6 q^{-2} -q-4 q^{-1} +3 (db)
Signature 0 (db)
HOMFLY-PT polynomial a^6 \left(-z^2\right)+a^6 z^{-2} -a^6+2 a^4 z^4+5 a^4 z^2-2 a^4 z^{-2} +a^4-a^2 z^6-4 a^2 z^4-4 a^2 z^2+a^2 z^{-2} +z^2 a^{-2} + a^{-2} -z^2-1 (db)
Kauffman polynomial a^7 z^7-4 a^7 z^5+4 a^7 z^3-a^7 z+3 a^6 z^8-14 a^6 z^6+19 a^6 z^4-10 a^6 z^2+a^6 z^{-2} +2 a^5 z^9-5 a^5 z^7-7 a^5 z^5+14 a^5 z^3-3 a^5 z-2 a^5 z^{-1} +8 a^4 z^8-39 a^4 z^6+55 a^4 z^4-31 a^4 z^2+2 a^4 z^{-2} +4 a^4+2 a^3 z^9-4 a^3 z^7-15 a^3 z^5+30 a^3 z^3-11 a^3 z-2 a^3 z^{-1} +5 a^2 z^8-27 a^2 z^6+z^6 a^{-2} +41 a^2 z^4-5 z^4 a^{-2} -23 a^2 z^2+4 z^2 a^{-2} +a^2 z^{-2} +5 a^2- a^{-2} +3 a z^7+z^7 a^{-1} -19 a z^5-7 z^5 a^{-1} +30 a z^3+10 z^3 a^{-1} -13 a z-4 z a^{-1} -z^6+2 z^2+1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5            0
3        211 -2
1       31   2
-1      441   -1
-3     332    2
-5    34      1
-7   431      2
-9  25        3
-11 12         -1
-13 2          2
-151           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1 i=1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z} {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{2} {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n392.gif

L11n392

L11n394.gif

L11n394