L11n405

From Knot Atlas
Jump to: navigation, search

L11n404.gif

L11n404

L11n406.gif

L11n406

Contents

L11n405.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n405 at Knotilus!


Link Presentations

[edit Notes on L11n405's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X16,9,17,10 X8,15,9,16 X4,17,1,18 X22,12,19,11 X10,4,11,3 X5,21,6,20 X21,5,22,18 X12,20,13,19 X2,14,3,13
Gauss code {1, -11, 7, -5}, {10, 8, -9, -6}, {-8, -1, 2, -4, 3, -7, 6, -10, 11, -2, 4, -3, 5, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n405 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (w-1)^2 \left(w^2+1\right) (v w+1)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial - q^{-5} +3 q^4+3 q^{-4} -4 q^3-6 q^{-3} +8 q^2+8 q^{-2} -9 q-10 q^{-1} +12 (db)
Signature 0 (db)
HOMFLY-PT polynomial z^8-a^2 z^6-z^6 a^{-2} +6 z^6-4 a^2 z^4-5 z^4 a^{-2} +13 z^4-5 a^2 z^2-10 z^2 a^{-2} +z^2 a^{-4} +14 z^2-3 a^2-11 a^{-2} +3 a^{-4} +11-a^2 z^{-2} -5 a^{-2} z^{-2} +2 a^{-4} z^{-2} +4 z^{-2} (db)
Kauffman polynomial a^5 z^5-2 a^5 z^3+a^5 z+3 a^4 z^6-6 a^4 z^4+6 z^4 a^{-4} +a^4 z^2-17 z^2 a^{-4} -2 a^{-4} z^{-2} +10 a^{-4} +4 a^3 z^7+3 z^7 a^{-3} -7 a^3 z^5-9 z^5 a^{-3} +a^3 z^3+14 z^3 a^{-3} -2 a^3 z-15 z a^{-3} +a^3 z^{-1} +5 a^{-3} z^{-1} +4 a^2 z^8+5 z^8 a^{-2} -9 a^2 z^6-22 z^6 a^{-2} +10 a^2 z^4+46 z^4 a^{-2} -9 a^2 z^2-45 z^2 a^{-2} -a^2 z^{-2} -5 a^{-2} z^{-2} +4 a^2+22 a^{-2} +2 a z^9+2 z^9 a^{-1} -z^7 a^{-1} -11 a z^5-12 z^5 a^{-1} +23 a z^3+34 z^3 a^{-1} -17 a z-29 z a^{-1} +5 a z^{-1} +9 a^{-1} z^{-1} +9 z^8-34 z^6+56 z^4-38 z^2-4 z^{-2} +17 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
9         33
7        32-1
5       51 4
3      43  -1
1     85   3
-1    46    2
-3   46     -2
-5  24      2
-7 14       -3
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n404.gif

L11n404

L11n406.gif

L11n406