L11n41

From Knot Atlas
Jump to: navigation, search

L11n40.gif

L11n40

L11n42.gif

L11n42

Contents

L11n41.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n41 at Knotilus!


Link Presentations

[edit Notes on L11n41's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X9,18,10,19 X8493 X5,14,6,15 X15,20,16,21 X17,22,18,5 X21,16,22,17 X19,10,20,11 X2,12,3,11
Gauss code {1, -11, 5, -3}, {-6, -1, 2, -5, -4, 10, 11, -2, 3, 6, -7, 9, -8, 4, -10, 7, -9, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n41 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(v^4-v^3+v^2-v+1\right)}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{7}{q^{9/2}}+\frac{5}{q^{7/2}}-\frac{5}{q^{5/2}}+\frac{2}{q^{3/2}}+\frac{1}{q^{19/2}}-\frac{2}{q^{17/2}}+\frac{5}{q^{15/2}}-\frac{6}{q^{13/2}}+\frac{6}{q^{11/2}}-\frac{1}{\sqrt{q}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^9 z^{-1} -z^5 a^7-3 z^3 a^7-z a^7+a^7 z^{-1} +z^7 a^5+5 z^5 a^5+8 z^3 a^5+6 z a^5+2 a^5 z^{-1} -z^5 a^3-4 z^3 a^3-5 z a^3-2 a^3 z^{-1} (db)
Kauffman polynomial -z^2 a^{12}+a^{12}-2 z^3 a^{11}+z a^{11}-z^6 a^{10}+z^4 a^{10}-2 z^2 a^{10}-3 z^7 a^9+10 z^5 a^9-12 z^3 a^9+4 z a^9+a^9 z^{-1} -3 z^8 a^8+9 z^6 a^8-6 z^4 a^8+3 z^2 a^8-3 a^8-z^9 a^7-3 z^7 a^7+23 z^5 a^7-27 z^3 a^7+8 z a^7+a^7 z^{-1} -5 z^8 a^6+18 z^6 a^6-14 z^4 a^6+2 z^2 a^6-z^9 a^5-z^7 a^5+18 z^5 a^5-26 z^3 a^5+12 z a^5-2 a^5 z^{-1} -2 z^8 a^4+8 z^6 a^4-7 z^4 a^4-2 z^2 a^4+3 a^4-z^7 a^3+5 z^5 a^3-9 z^3 a^3+7 z a^3-2 a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
0         11
-2        1 -1
-4       41 3
-6      33  0
-8     42   2
-10   133    1
-12   44     0
-14  23      1
-16 14       -3
-18 1        1
-201         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4} {\mathbb Z}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n40.gif

L11n40

L11n42.gif

L11n42