L11n427

From Knot Atlas
Jump to: navigation, search

L11n426.gif

L11n426

L11n428.gif

L11n428

Contents

L11n427.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n427 at Knotilus!


Link Presentations

[edit Notes on L11n427's Link Presentations]

Planar diagram presentation X8192 X11,18,12,19 X3,10,4,11 X19,2,20,3 X7,16,8,17 X20,9,21,10 X17,12,18,7 X22,16,13,15 X14,6,15,5 X4,14,5,13 X6,21,1,22
Gauss code {1, 4, -3, -10, 9, -11}, {-5, -1, 6, 3, -2, 7}, {10, -9, 8, 5, -7, 2, -4, -6, 11, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n427 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1)^2 t(2) t(3)^3-t(1) t(2) t(3)^3+t(1)^2 t(2)^2 t(3)^2-t(1) t(2)^2 t(3)^2-2 t(1) t(3)^2-2 t(1)^2 t(2) t(3)^2+4 t(1) t(2) t(3)^2-t(2) t(3)^2+t(3)^2-t(1)^2 t(2)^2 t(3)+2 t(1) t(2)^2 t(3)+t(1) t(3)+t(1)^2 t(2) t(3)-4 t(1) t(2) t(3)+2 t(2) t(3)-t(3)+t(1) t(2)-t(2)}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial 2 q^{-7} -3 q^{-6} +7 q^{-5} -8 q^{-4} +10 q^{-3} -q^2-9 q^{-2} +3 q+8 q^{-1} -5 (db)
Signature -2 (db)
HOMFLY-PT polynomial a^8 z^{-2} +a^8-a^6 z^4-4 a^6 z^2-2 a^6 z^{-2} -5 a^6+a^4 z^6+4 a^4 z^4+6 a^4 z^2+a^4 z^{-2} +4 a^4+a^2 z^6+3 a^2 z^4+2 a^2 z^2-z^4-2 z^2 (db)
Kauffman polynomial 3 a^8 z^4-8 a^8 z^2-a^8 z^{-2} +6 a^8+a^7 z^7-a^7 z^5+3 a^7 z^3-6 a^7 z+2 a^7 z^{-1} +2 a^6 z^8-7 a^6 z^6+20 a^6 z^4-25 a^6 z^2-2 a^6 z^{-2} +12 a^6+a^5 z^9-a^5 z^5+7 a^5 z^3-8 a^5 z+2 a^5 z^{-1} +5 a^4 z^8-15 a^4 z^6+27 a^4 z^4-22 a^4 z^2-a^4 z^{-2} +8 a^4+a^3 z^9+3 a^3 z^7-10 a^3 z^5+11 a^3 z^3-3 a^3 z+3 a^2 z^8-5 a^2 z^6+3 a^2 z^4-2 a^2 z^2+a^2+4 a z^7-9 a z^5+z^5 a^{-1} +5 a z^3-2 z^3 a^{-1} -a z+3 z^6-7 z^4+3 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
5         1-1
3        2 2
1       31 -2
-1      52  3
-3     54   -1
-5    54    1
-7   46     2
-9  34      -1
-11 15       4
-1312        -1
-152         2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}^{2} {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n426.gif

L11n426

L11n428.gif

L11n428