L11n435

From Knot Atlas
Jump to: navigation, search

L11n434.gif

L11n434

L11n436.gif

L11n436

Contents

L11n435.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n435 at Knotilus!


Link Presentations

[edit Notes on L11n435's Link Presentations]

Planar diagram presentation X8192 X14,4,15,3 X12,14,7,13 X2738 X22,10,13,9 X6,22,1,21 X20,16,21,15 X16,5,17,6 X11,19,12,18 X17,11,18,10 X4,19,5,20
Gauss code {1, -4, 2, -11, 8, -6}, {4, -1, 5, 10, -9, -3}, {3, -2, 7, -8, -10, 9, 11, -7, 6, -5}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n435 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-t(1)^2 t(3)^3+t(1) t(3)^3+t(1)^2 t(2) t(3)^3-2 t(1) t(2) t(3)^3+t(2) t(3)^3+2 t(1)^2 t(3)^2-2 t(1) t(2)^2 t(3)^2+t(2)^2 t(3)^2-2 t(1) t(3)^2-2 t(1)^2 t(2) t(3)^2+5 t(1) t(2) t(3)^2-2 t(2) t(3)^2-t(1)^2 t(3)+2 t(1) t(2)^2 t(3)-2 t(2)^2 t(3)+2 t(1) t(3)+2 t(1)^2 t(2) t(3)-5 t(1) t(2) t(3)+2 t(2) t(3)-t(1) t(2)^2+t(2)^2-t(1)^2 t(2)+2 t(1) t(2)-t(2)}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial -q^8+4 q^7-8 q^6+12 q^5-14 q^4+16 q^3-13 q^2+11 q+3 q^{-1} -6 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-4} -4 z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -10 z^2 a^{-2} +6 z^2 a^{-4} -z^2 a^{-6} +3 z^2-8 a^{-2} +5 a^{-4} - a^{-6} +4-2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} (db)
Kauffman polynomial z^5 a^{-9} -z^3 a^{-9} +4 z^6 a^{-8} -6 z^4 a^{-8} +z^2 a^{-8} +7 z^7 a^{-7} -12 z^5 a^{-7} +4 z^3 a^{-7} -z a^{-7} +7 z^8 a^{-6} -12 z^6 a^{-6} +7 z^4 a^{-6} -4 z^2 a^{-6} + a^{-6} +3 z^9 a^{-5} +4 z^7 a^{-5} -17 z^5 a^{-5} +14 z^3 a^{-5} -3 z a^{-5} +13 z^8 a^{-4} -34 z^6 a^{-4} +41 z^4 a^{-4} -24 z^2 a^{-4} - a^{-4} z^{-2} +8 a^{-4} +3 z^9 a^{-3} -7 z^5 a^{-3} +12 z^3 a^{-3} -8 z a^{-3} +2 a^{-3} z^{-1} +6 z^8 a^{-2} -18 z^6 a^{-2} +34 z^4 a^{-2} -31 z^2 a^{-2} -2 a^{-2} z^{-2} +12 a^{-2} +3 z^7 a^{-1} -3 z^5 a^{-1} +3 z^3 a^{-1} -6 z a^{-1} +2 a^{-1} z^{-1} +6 z^4-12 z^2- z^{-2} +6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        3 3
13       51 -4
11      73  4
9     86   -2
7    86    2
5   69     3
3  57      -2
1 27       5
-114        -3
-33         3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-2 {\mathbb Z}^{3} {\mathbb Z}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{7}
r=5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n434.gif

L11n434

L11n436.gif

L11n436