L11n440

From Knot Atlas
Jump to: navigation, search

L11n439.gif

L11n439

L11n441.gif

L11n441

Contents

L11n440.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n440 at Knotilus!


Link Presentations

[edit Notes on L11n440's Link Presentations]

Planar diagram presentation X6172 X2536 X18,11,19,12 X3,11,4,10 X9,1,10,4 X7,15,8,14 X13,5,14,8 X19,13,20,22 X15,21,16,20 X21,17,22,16 X12,17,9,18
Gauss code {1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, 3, -11}, {-7, 6, -9, 10, 11, -3, -8, 9, -10, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n440 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v w x^2-u v w x-2 u v x^2+2 u v x-u v+u w+u x^2-u x-v w x^2+v w x+v x^3-w x^3+2 w x^2-2 w x-x^2+x}{\sqrt{u} \sqrt{v} \sqrt{w} x^{3/2}} (db)
Jones polynomial q^{15/2}-2 q^{13/2}+5 q^{11/2}-6 q^{9/2}+5 q^{7/2}-7 q^{5/2}+3 q^{3/2}-5 \sqrt{q}-\frac{1}{\sqrt{q}}-\frac{1}{q^{5/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^5 a^{-1} +2 z^5 a^{-3} +a z^3-8 z^3 a^{-1} +10 z^3 a^{-3} -3 z^3 a^{-5} +4 a z-17 z a^{-1} +21 z a^{-3} -9 z a^{-5} +z a^{-7} +5 a z^{-1} -17 a^{-1} z^{-1} +21 a^{-3} z^{-1} -11 a^{-5} z^{-1} +2 a^{-7} z^{-1} +2 a z^{-3} -7 a^{-1} z^{-3} +9 a^{-3} z^{-3} -5 a^{-5} z^{-3} + a^{-7} z^{-3} (db)
Kauffman polynomial z^6 a^{-8} -4 z^4 a^{-8} +6 z^2 a^{-8} + a^{-8} z^{-2} -4 a^{-8} +2 z^7 a^{-7} -6 z^5 a^{-7} +4 z^3 a^{-7} - a^{-7} z^{-3} -2 z a^{-7} +2 a^{-7} z^{-1} +z^8 a^{-6} +4 z^6 a^{-6} -26 z^4 a^{-6} +34 z^2 a^{-6} +7 a^{-6} z^{-2} -24 a^{-6} +7 z^7 a^{-5} -24 z^5 a^{-5} +23 z^3 a^{-5} -5 a^{-5} z^{-3} -16 z a^{-5} +12 a^{-5} z^{-1} +z^8 a^{-4} +7 z^6 a^{-4} -43 z^4 a^{-4} +75 z^2 a^{-4} +18 a^{-4} z^{-2} -58 a^{-4} +5 z^7 a^{-3} -23 z^5 a^{-3} +41 z^3 a^{-3} -9 a^{-3} z^{-3} -37 z a^{-3} +24 a^{-3} z^{-1} +5 z^6 a^{-2} -32 z^4 a^{-2} +73 z^2 a^{-2} +19 a^{-2} z^{-2} -60 a^{-2} +a z^7+z^7 a^{-1} -7 a z^5-12 z^5 a^{-1} +15 a z^3+37 z^3 a^{-1} -2 a z^{-3} -7 a^{-1} z^{-3} -16 a z-39 z a^{-1} +9 a z^{-1} +23 a^{-1} z^{-1} +z^6-11 z^4+26 z^2+7 z^{-2} -23 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          1 1
12         41 -3
10        21  1
8       45   1
6     141    2
4      4     4
2   174      2
0    6       6
-2  1         1
-41           1
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2 i=4
r=-4 {\mathbb Z} {\mathbb Z}
r=-3
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{6} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{4} {\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n439.gif

L11n439

L11n441.gif

L11n441