L11n456

From Knot Atlas
Jump to: navigation, search

L11n455.gif

L11n455

L11n457.gif

L11n457

Contents

L11n456.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n456 at Knotilus!


Link Presentations

[edit Notes on L11n456's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X15,18,16,11 X9,21,10,20 X13,19,14,22 X21,15,22,14 X19,5,20,10 X17,8,18,9 X7,16,8,17 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {-7, 4, -6, 5}, {10, -1, -9, 8, -4, 7}, {11, -2, -5, 6, -3, 9, -8, 3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n456 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{-u v w x+u v w+u v x-u v-u w^2 x^2+2 u w x-u w-u x+u+v w^2 x^2-v w^2 x-v w x^2+2 v w x-v-w^2 x^2+w^2 x+w x^2-w x}{\sqrt{u} \sqrt{v} w x} (db)
Jones polynomial -\frac{6}{q^{9/2}}+\frac{5}{q^{7/2}}-q^{5/2}-\frac{7}{q^{5/2}}+\frac{3}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{3}{q^{13/2}}+\frac{4}{q^{11/2}}-\frac{4}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^7+2 z^3 a^5+3 z a^5+2 a^5 z^{-1} +a^5 z^{-3} -z^5 a^3-4 z^3 a^3-9 z a^3-7 a^3 z^{-1} -3 a^3 z^{-3} +z^5 a+7 z^3 a+11 z a+8 a z^{-1} +3 a z^{-3} -z^3 a^{-1} -4 z a^{-1} -3 a^{-1} z^{-1} - a^{-1} z^{-3} (db)
Kauffman polynomial a^8 z^6-3 a^8 z^4+a^8 z^2+3 a^7 z^7-11 a^7 z^5+9 a^7 z^3-3 a^7 z+3 a^6 z^8-10 a^6 z^6+5 a^6 z^4+a^6 z^2+a^5 z^9+a^5 z^7-16 a^5 z^5+22 a^5 z^3-a^5 z^{-3} -12 a^5 z+5 a^5 z^{-1} +4 a^4 z^8-16 a^4 z^6+16 a^4 z^4+3 a^4 z^2+3 a^4 z^{-2} -10 a^4+a^3 z^9-3 a^3 z^7-2 a^3 z^5+17 a^3 z^3-3 a^3 z^{-3} -21 a^3 z+12 a^3 z^{-1} +a^2 z^8-5 a^2 z^6+4 a^2 z^4+15 a^2 z^2+6 a^2 z^{-2} -19 a^2+z^7 a^{-1} -4 a z^5-7 z^5 a^{-1} +18 a z^3+14 z^3 a^{-1} -3 a z^{-3} - a^{-1} z^{-3} -23 a z-11 z a^{-1} +12 a z^{-1} +5 a^{-1} z^{-1} -4 z^4+12 z^2+3 z^{-2} -10 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
6           11
4           11
2        11  0
0       4    4
-2      241   1
-4     62     4
-6    361     2
-8   331      1
-10  24        2
-12 12         -1
-14 2          2
-161           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z} {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{6}
r=-1 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}_2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}
r=3
r=4 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n455.gif

L11n455

L11n457.gif

L11n457