L11n54

From Knot Atlas
Jump to: navigation, search

L11n53.gif

L11n53

L11n55.gif

L11n55

Contents

L11n54.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n54 at Knotilus!


Link Presentations

[edit Notes on L11n54's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,17,12,16 X7,15,8,14 X15,9,16,8 X13,21,14,20 X17,5,18,22 X21,19,22,18 X19,13,20,12 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, -4, 5, 11, -2, -3, 9, -6, 4, -5, 3, -7, 8, -9, 6, -8, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n54 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(2)^5-2 t(2)^4+t(1) t(2)^3+t(2)^2-2 t(1) t(2)+2 t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{9/2}-q^{7/2}+2 q^{5/2}-\frac{1}{q^{5/2}}-3 q^{3/2}+\frac{1}{q^{3/2}}+q^{15/2}-q^{13/2}+2 \sqrt{q}-\frac{3}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^5 a^{-1} -z^5 a^{-3} +a z^3-4 z^3 a^{-1} -4 z^3 a^{-3} +3 a z-4 z a^{-1} -3 z a^{-3} +z a^{-5} +z a^{-7} +2 a z^{-1} -2 a^{-1} z^{-1} - a^{-3} z^{-1} + a^{-5} z^{-1} (db)
Kauffman polynomial -z^9 a^{-1} -z^9 a^{-3} -3 z^8 a^{-2} -2 z^8 a^{-4} -z^8-a z^7+4 z^7 a^{-1} +5 z^7 a^{-3} -z^7 a^{-5} -z^7 a^{-7} +16 z^6 a^{-2} +13 z^6 a^{-4} -z^6 a^{-8} +4 z^6+6 a z^5-z^5 a^{-1} -6 z^5 a^{-3} +7 z^5 a^{-5} +6 z^5 a^{-7} -22 z^4 a^{-2} -24 z^4 a^{-4} +2 z^4 a^{-6} +5 z^4 a^{-8} -z^4-11 a z^3-5 z^3 a^{-1} +5 z^3 a^{-3} -9 z^3 a^{-5} -8 z^3 a^{-7} +9 z^2 a^{-2} +17 z^2 a^{-4} -2 z^2 a^{-6} -5 z^2 a^{-8} -5 z^2+8 a z+5 z a^{-1} -4 z a^{-3} +z a^{-5} +2 z a^{-7} -3 a^{-4} + a^{-8} +3-2 a z^{-1} -2 a^{-1} z^{-1} + a^{-3} z^{-1} + a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14            0
12        111 1
10       21   -1
8      121   0
6     331    -1
4    111     1
2   241      1
0  111       1
-2  2         2
-411          0
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2 i=4
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n53.gif

L11n53

L11n55.gif

L11n55