L11n56

From Knot Atlas
Jump to: navigation, search

L11n55.gif

L11n55

L11n57.gif

L11n57

Contents

L11n56.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n56 at Knotilus!


Link Presentations

[edit Notes on L11n56's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,17,12,16 X14,7,15,8 X8,15,9,16 X13,21,14,20 X17,5,18,22 X21,19,22,18 X19,13,20,12 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, -3, 9, -6, -4, 5, 3, -7, 8, -9, 6, -8, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n56 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 t(1) t(2)^3-t(2)^3-4 t(1) t(2)^2+4 t(2)^2+4 t(1) t(2)-4 t(2)-t(1)+2}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial q^{9/2}-\frac{1}{q^{9/2}}-3 q^{7/2}+\frac{2}{q^{7/2}}+5 q^{5/2}-\frac{5}{q^{5/2}}-6 q^{3/2}+\frac{6}{q^{3/2}}+7 \sqrt{q}-\frac{8}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^3 z^3+z^3 a^{-3} +2 a^3 z+z a^{-3} +2 a^3 z^{-1} -a z^5-z^5 a^{-1} -3 a z^3-2 z^3 a^{-1} -5 a z-3 a z^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial -a z^9-z^9 a^{-1} -a^2 z^8-3 z^8 a^{-2} -4 z^8+2 a z^7-z^7 a^{-1} -3 z^7 a^{-3} +2 a^2 z^6+9 z^6 a^{-2} -z^6 a^{-4} +12 z^6-4 a^3 z^5-5 a z^5+9 z^5 a^{-1} +10 z^5 a^{-3} -2 a^4 z^4-7 a^2 z^4-5 z^4 a^{-2} +3 z^4 a^{-4} -13 z^4-a^5 z^3+6 a^3 z^3+9 a z^3-5 z^3 a^{-1} -7 z^3 a^{-3} +a^4 z^2+7 a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +9 z^2+a^5 z-6 a^3 z-9 a z-z a^{-1} +z a^{-3} -3 a^2- a^{-2} -3+2 a^3 z^{-1} +3 a z^{-1} + a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        2 2
6       31 -2
4      32  1
2     43   -1
0    43    1
-2   35     2
-4  23      -1
-6  3       3
-812        -1
-101         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n55.gif

L11n55

L11n57.gif

L11n57