L11n70

From Knot Atlas
Jump to: navigation, search

L11n69.gif

L11n69

L11n71.gif

L11n71

Contents

L11n70.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n70 at Knotilus!


Link Presentations

[edit Notes on L11n70's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,8,17,7 X17,22,18,5 X11,18,12,19 X13,20,14,21 X19,12,20,13 X21,14,22,15 X8,16,9,15 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, -5, 7, -6, 8, 9, -3, -4, 5, -7, 6, -8, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n70 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^5-t(2)^5-2 t(1) t(2)^4+t(2)^4+t(1) t(2)^3-t(2)^3-t(1) t(2)^2+t(2)^2+t(1) t(2)-2 t(2)-t(1)+1}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{4}{q^{11/2}}-\frac{4}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{2}{q^{17/2}}+\frac{1}{q^{19/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^9 z^{-1} -z^5 a^7-3 z^3 a^7+z a^7+3 a^7 z^{-1} +z^7 a^5+5 z^5 a^5+6 z^3 a^5-2 a^5 z^{-1} -z^5 a^3-4 z^3 a^3-3 z a^3 (db)
Kauffman polynomial -z^2 a^{12}-2 z^3 a^{11}-3 z^4 a^{10}+3 z^2 a^{10}-a^{10}-4 z^5 a^9+8 z^3 a^9-4 z a^9+a^9 z^{-1} -z^8 a^8+3 z^6 a^8-6 z^4 a^8+10 z^2 a^8-3 a^8-z^9 a^7+4 z^7 a^7-8 z^5 a^7+14 z^3 a^7-10 z a^7+3 a^7 z^{-1} -3 z^8 a^6+13 z^6 a^6-16 z^4 a^6+9 z^2 a^6-3 a^6-z^9 a^5+3 z^7 a^5+z^5 a^5-3 z^3 a^5-3 z a^5+2 a^5 z^{-1} -2 z^8 a^4+10 z^6 a^4-13 z^4 a^4+3 z^2 a^4-z^7 a^3+5 z^5 a^3-7 z^3 a^3+3 z a^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
0         11
-2        1 -1
-4       21 1
-6      22  0
-8     31   2
-10    12    1
-12   33     0
-14  12      1
-16 12       -1
-18 1        1
-201         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n69.gif

L11n69

L11n71.gif

L11n71