L11n73

From Knot Atlas
Jump to: navigation, search

L11n72.gif

L11n72

L11n74.gif

L11n74

Contents

L11n73.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n73 at Knotilus!


Link Presentations

[edit Notes on L11n73's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,8,17,7 X17,22,18,5 X11,18,12,19 X21,12,22,13 X13,20,14,21 X19,14,20,15 X8,16,9,15 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, -5, 6, -7, 8, 9, -3, -4, 5, -8, 7, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n73 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u v^3-5 u v^2+4 u v-2 u-2 v^3+4 v^2-5 v+2}{\sqrt{u} v^{3/2}} (db)
Jones polynomial \frac{9}{q^{9/2}}-\frac{9}{q^{7/2}}+\frac{7}{q^{5/2}}-\frac{6}{q^{3/2}}+\frac{1}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{5}{q^{13/2}}-\frac{8}{q^{11/2}}-\sqrt{q}+\frac{3}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 \left(-z^3\right)-a^7 z+a^5 z^5+2 a^5 z^3+2 a^5 z+a^5 z^{-1} +a^3 z^5+a^3 z^3-2 a^3 z-a^3 z^{-1} -a z^3-a z (db)
Kauffman polynomial a^{10} z^4-2 a^{10} z^2+3 a^9 z^5-5 a^9 z^3+a^9 z+a^8 z^8-2 a^8 z^6+5 a^8 z^4-3 a^8 z^2+a^7 z^9-2 a^7 z^7+5 a^7 z^5-2 a^7 z^3+a^7 z+4 a^6 z^8-10 a^6 z^6+12 a^6 z^4-2 a^6 z^2+a^5 z^9+2 a^5 z^7-7 a^5 z^5+8 a^5 z^3-4 a^5 z+a^5 z^{-1} +3 a^4 z^8-5 a^4 z^6+2 a^4 z^4-a^4+4 a^3 z^7-8 a^3 z^5+3 a^3 z^3-3 a^3 z+a^3 z^{-1} +3 a^2 z^6-6 a^2 z^4+a^2 z^2+a z^5-2 a z^3+a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0        2 -2
-2       41 3
-4      43  -1
-6     53   2
-8    44    0
-10   45     -1
-12  25      3
-14 13       -2
-16 2        2
-181         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n72.gif

L11n72

L11n74.gif

L11n74