From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n76 at Knotilus!

Link Presentations

[edit Notes on L11n76's Link Presentations]

Planar diagram presentation X6172 X3,10,4,11 X15,5,16,22 X7,17,8,16 X17,20,18,21 X9,14,10,15 X19,13,20,12 X13,19,14,18 X21,9,22,8 X2536 X11,4,12,1
Gauss code {1, -10, -2, 11}, {10, -1, -4, 9, -6, 2, -11, 7, -8, 6, -3, 4, -5, 8, -7, 5, -9, 3}
A Braid Representative
A Morse Link Presentation L11n76 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^5-5 t(1) t(2)^4+t(2)^4+8 t(1) t(2)^3-6 t(2)^3-6 t(1) t(2)^2+8 t(2)^2+t(1) t(2)-5 t(2)+1}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial q^{9/2}-\frac{3}{q^{9/2}}-3 q^{7/2}+\frac{7}{q^{7/2}}+7 q^{5/2}-\frac{11}{q^{5/2}}-11 q^{3/2}+\frac{13}{q^{3/2}}+13 \sqrt{q}-\frac{15}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z+a^5 z^{-1} -a^3 z^5-3 a^3 z^3+z^3 a^{-3} -4 a^3 z+2 z a^{-3} -2 a^3 z^{-1} + a^{-3} z^{-1} +a z^7+4 a z^5-2 z^5 a^{-1} +6 a z^3-6 z^3 a^{-1} +5 a z-6 z a^{-1} +3 a z^{-1} -3 a^{-1} z^{-1} (db)
Kauffman polynomial -2 a z^9-2 z^9 a^{-1} -7 a^2 z^8-4 z^8 a^{-2} -11 z^8-8 a^3 z^7-11 a z^7-6 z^7 a^{-1} -3 z^7 a^{-3} -3 a^4 z^6+12 a^2 z^6+7 z^6 a^{-2} -z^6 a^{-4} +23 z^6+16 a^3 z^5+35 a z^5+27 z^5 a^{-1} +8 z^5 a^{-3} -3 a^4 z^4-13 a^2 z^4+2 z^4 a^{-2} +3 z^4 a^{-4} -11 z^4-6 a^5 z^3-21 a^3 z^3-33 a z^3-25 z^3 a^{-1} -7 z^3 a^{-3} +3 a^4 z^2+9 a^2 z^2-6 z^2 a^{-2} -3 z^2 a^{-4} +3 z^2+5 a^5 z+11 a^3 z+15 a z+12 z a^{-1} +3 z a^{-3} -2 a^2+2 a^{-2} + a^{-4} -a^5 z^{-1} -2 a^3 z^{-1} -3 a z^{-1} -3 a^{-1} z^{-1} - a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
10         1-1
8        2 2
6       51 -4
4      62  4
2     75   -2
0    86    2
-2   68     2
-4  57      -2
-6 26       4
-815        -4
-103         3
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}^{3} {\mathbb Z}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.