L11n85

From Knot Atlas
Jump to: navigation, search

L11n84.gif

L11n84

L11n86.gif

L11n86

Contents

L11n85.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n85 at Knotilus!


Link Presentations

[edit Notes on L11n85's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X14,8,15,7 X9,18,10,19 X22,19,5,20 X20,15,21,16 X16,21,17,22 X17,8,18,9 X10,14,11,13 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, 8, -4, -9, 11, -2, 9, -3, 6, -7, -8, 4, 5, -6, 7, -5}
A Braid Representative
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n85 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3-5 u v^2+6 u v-3 u-3 v^3+6 v^2-5 v+1}{\sqrt{u} v^{3/2}} (db)
Jones polynomial \frac{9}{q^{9/2}}-\frac{8}{q^{7/2}}+\frac{5}{q^{5/2}}-\frac{2}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{5}{q^{17/2}}-\frac{8}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{11}{q^{11/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^{11} z^{-1} +3 z a^9+2 a^9 z^{-1} -3 z^3 a^7-3 z a^7+z^5 a^5+z^3 a^5-a^5 z^{-1} -2 z^3 a^3-2 z a^3 (db)
Kauffman polynomial -z^6 a^{12}+4 z^4 a^{12}-5 z^2 a^{12}+2 a^{12}-2 z^7 a^{11}+6 z^5 a^{11}-5 z^3 a^{11}+2 z a^{11}-a^{11} z^{-1} -2 z^8 a^{10}+2 z^6 a^{10}+8 z^4 a^{10}-12 z^2 a^{10}+5 a^{10}-z^9 a^9-3 z^7 a^9+12 z^5 a^9-8 z^3 a^9+4 z a^9-2 a^9 z^{-1} -5 z^8 a^8+8 z^6 a^8+z^4 a^8-4 z^2 a^8+3 a^8-z^9 a^7-4 z^7 a^7+8 z^5 a^7-z^3 a^7-2 z a^7-3 z^8 a^6+4 z^6 a^6-7 z^4 a^6+6 z^2 a^6-a^6-3 z^7 a^5+2 z^5 a^5-z^3 a^5-2 z a^5+a^5 z^{-1} -z^6 a^4-4 z^4 a^4+3 z^2 a^4-3 z^3 a^3+2 z a^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         22
-4        41-3
-6       41 3
-8      54  -1
-10     64   2
-12    46    2
-14   45     -1
-16  14      3
-18 14       -3
-20 1        1
-221         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n84.gif

L11n84

L11n86.gif

L11n86