L11n87

From Knot Atlas
Jump to: navigation, search

L11n86.gif

L11n86

L11n88.gif

L11n88

Contents

L11n87.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n87 at Knotilus!


Link Presentations

[edit Notes on L11n87's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X14,8,15,7 X15,20,16,21 X9,19,10,18 X19,9,20,8 X17,22,18,5 X21,16,22,17 X10,14,11,13 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, 3, 6, -5, -9, 11, -2, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n87 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3-u v^2-u-v^3-v+1}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\frac{2}{q^{7/2}}-q^{5/2}+\frac{1}{q^{5/2}}+2 q^{3/2}-\frac{2}{q^{3/2}}-2 \sqrt{q}+\frac{2}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^5 z^{-1} -a^3 z^3-3 a^3 z-a^3 z^{-1} +a z^5+4 a z^3-z^3 a^{-1} +3 a z-2 z a^{-1} (db)
Kauffman polynomial -a^3 z^9-a z^9-a^4 z^8-3 a^2 z^8-2 z^8+5 a^3 z^7+4 a z^7-z^7 a^{-1} +6 a^4 z^6+17 a^2 z^6+11 z^6-5 a^3 z^5+5 z^5 a^{-1} -9 a^4 z^4-25 a^2 z^4-16 z^4+a^5 z^3+a^3 z^3-6 a z^3-6 z^3 a^{-1} +a^6 z^2+4 a^4 z^2+10 a^2 z^2+7 z^2+a^5 z+a z+2 z a^{-1} +a^4-a^5 z^{-1} -a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234χ
6        11
4       1 -1
2      11 0
0    121  0
-2   121   0
-4   12    1
-6  21     1
-81 1      2
-1011       0
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n86.gif

L11n86

L11n88.gif

L11n88