L11n94

From Knot Atlas
Jump to: navigation, search

L11n93.gif

L11n93

L11n95.gif

L11n95

Contents

L11n94.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n94 at Knotilus!


Link Presentations

[edit Notes on L11n94's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X9,14,10,15 X19,22,20,5 X11,21,12,20 X21,11,22,10 X15,19,16,18 X7,17,8,16 X17,9,18,8 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, -8, 9, -3, 6, -5, -2, 11, 3, -7, 8, -9, 7, -4, 5, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n94 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(v^2+1\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial q^{9/2}-2 q^{7/2}+2 q^{5/2}-\frac{1}{q^{5/2}}-4 q^{3/2}+\frac{2}{q^{3/2}}+q^{15/2}-q^{13/2}+3 \sqrt{q}-\frac{3}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z a^{-7} + a^{-7} z^{-1} -z^3 a^{-5} -4 z a^{-5} -3 a^{-5} z^{-1} +2 z^3 a^{-3} +6 z a^{-3} +3 a^{-3} z^{-1} -z^5 a^{-1} +a z^3-4 z^3 a^{-1} +2 a z-5 z a^{-1} +a z^{-1} -2 a^{-1} z^{-1} (db)
Kauffman polynomial -z^9 a^{-1} -z^9 a^{-3} -4 z^8 a^{-2} -2 z^8 a^{-4} -2 z^8-a z^7+2 z^7 a^{-1} +3 z^7 a^{-3} -z^7 a^{-5} -z^7 a^{-7} +21 z^6 a^{-2} +12 z^6 a^{-4} -z^6 a^{-8} +10 z^6+5 a z^5+9 z^5 a^{-1} +6 z^5 a^{-3} +8 z^5 a^{-5} +6 z^5 a^{-7} -29 z^4 a^{-2} -18 z^4 a^{-4} +3 z^4 a^{-6} +5 z^4 a^{-8} -13 z^4-7 a z^3-19 z^3 a^{-1} -18 z^3 a^{-3} -14 z^3 a^{-5} -8 z^3 a^{-7} +13 z^2 a^{-2} +8 z^2 a^{-4} -5 z^2 a^{-6} -5 z^2 a^{-8} +5 z^2+4 a z+11 z a^{-1} +14 z a^{-3} +10 z a^{-5} +3 z a^{-7} -2 a^{-2} +2 a^{-6} + a^{-8} -a z^{-1} -2 a^{-1} z^{-1} -3 a^{-3} z^{-1} -3 a^{-5} z^{-1} - a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14            0
12        111 1
10       21   -1
8      221   1
6     231    0
4    321     2
2   241      1
0  121       0
-2 12         1
-4 1          -1
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2 i=4
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n93.gif

L11n93

L11n95.gif

L11n95