L6a1

From Knot Atlas
Jump to: navigation, search

L5a1.gif

L5a1

L6a2.gif

L6a2

Contents

L6a1.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L6a1 at Knotilus!

L6a1 is 6^2_3 in the Rolfsen table of links.

A kolam with two cycles/components[1]
Depiction with two eights interlaced
Mongolian ornament ; the two eights are horizontal
Another one, sum of two L6a1
Another depiction

Link Presentations

[edit Notes on L6a1's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X12,8,5,7 X8,12,9,11 X2536 X4,9,1,10
Gauss code {1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L6a1 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v-2 u-2 v+1}{\sqrt{u} \sqrt{v}} (db)
Jones polynomial -\frac{1}{q^{9/2}}+\frac{1}{q^{7/2}}-\frac{3}{q^{5/2}}-q^{3/2}+\frac{2}{q^{3/2}}+2 \sqrt{q}-\frac{2}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^{-1} -2 z a^3-a^3 z^{-1} +z^3 a+z a-z a^{-1} (db)
Kauffman polynomial a^5 z^3-2 a^5 z+a^5 z^{-1} +a^4 z^4-a^4+a^3 z^5-a^3 z+a^3 z^{-1} +3 a^2 z^4-3 a^2 z^2+a z^5+z^3 a^{-1} -z a^{-1} +2 z^4-3 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012χ
4      11
2     1 -1
0    11 0
-2   22  0
-4  1    1
-6  2    2
-811     0
-101      1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L5a1.gif

L5a1

L6a2.gif

L6a2