L6a5

From Knot Atlas
Jump to: navigation, search

L6a4.gif

L6a4

L6n1.gif

L6n1

Contents

L6a5.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L6a5 at Knotilus!

L6a5 is 6^3_1 in the Rolfsen table of links. It is a closed three-link chain.

Stained glass window of Trinity symbol, Brazil
French coat of arms.
Russian coat of arms.
Russian passport page-number decoration.

Link Presentations

[edit Notes on L6a5's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X12,7,9,8 X8,11,5,12 X2536 X4,9,1,10
Gauss code {1, -5, 2, -6}, {5, -1, 3, -4}, {6, -2, 4, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L6a5 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(2) t(1)+t(3) t(1)-t(1)-t(2)+t(2) t(3)-t(3)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)}} (db)
Jones polynomial  q^{-1} -2 q^{-2} +3 q^{-3} - q^{-4} +3 q^{-5} - q^{-6} + q^{-7} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^8 z^{-2} -2 a^6 z^{-2} -3 a^6+2 a^4 z^2+a^4 z^{-2} +3 a^4+a^2 z^2 (db)
Kauffman polynomial z^4 a^8-3 z^2 a^8-a^8 z^{-2} +3 a^8+z^5 a^7-z^3 a^7-3 z a^7+2 a^7 z^{-1} +4 z^4 a^6-9 z^2 a^6-2 a^6 z^{-2} +5 a^6+z^5 a^5+z^3 a^5-3 z a^5+2 a^5 z^{-1} +3 z^4 a^4-5 z^2 a^4-a^4 z^{-2} +3 a^4+2 z^3 a^3+z^2 a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10χ
-1      11
-3     21-1
-5    1  1
-7    2  2
-9  31   2
-11 13    2
-13       0
-151      1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L6a4.gif

L6a4

L6n1.gif

L6n1