L7a7

From Knot Atlas
Jump to: navigation, search

L7a6.gif

L7a6

L7n1.gif

L7n1

Contents

L7a7.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L7a7 at Knotilus!

L7a7 is 7^3_1 in the Rolfsen table of links.


Link Presentations

[edit Notes on L7a7's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,12,9,11 X8,14,5,13 X12,8,13,7 X2536 X4,9,1,10
Gauss code {1, -6, 2, -7}, {6, -1, 5, -4}, {7, -2, 3, -5, 4, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L7a7 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v w+u (-v)-u w+2 u-2 v w+v+w-1}{\sqrt{u} \sqrt{v} \sqrt{w}} (db)
Jones polynomial  q^{-4} -q^3- q^{-3} +3 q^2+4 q^{-2} -3 q-3 q^{-1} +4 (db)
Signature 0 (db)
HOMFLY-PT polynomial a^4 z^{-2} +a^4-2 z^2 a^2-2 a^2 z^{-2} -3 a^2+z^4+2 z^2+ z^{-2} +2-z^2 a^{-2} (db)
Kauffman polynomial a^2 z^6+z^6+a^3 z^5+4 a z^5+3 z^5 a^{-1} +a^4 z^4+a^2 z^4+3 z^4 a^{-2} +3 z^4-4 a z^3-3 z^3 a^{-1} +z^3 a^{-3} -3 a^4 z^2-5 a^2 z^2-3 z^2 a^{-2} -5 z^2-3 a^3 z-3 a z+3 a^4+5 a^2+3+2 a^3 z^{-1} +2 a z^{-1} -a^4 z^{-2} -2 a^2 z^{-2} - z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123χ
7       1-1
5      2 2
3     11 0
1    32  1
-1   34   1
-3  1     1
-5  3     3
-711      0
-91       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L7a6.gif

L7a6

L7n1.gif

L7n1