L8a1

From Knot Atlas
Jump to: navigation, search

L7n2.gif

L7n2

L8a2.gif

L8a2

Contents

L8a1.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a1 at Knotilus!

L8a1 is 8^2_{13} in the Rolfsen table of links.


Link Presentations

[edit Notes on L8a1's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X12,10,13,9 X8493 X10,5,11,6 X16,11,5,12 X2,14,3,13
Gauss code {1, -8, 5, -3}, {6, -1, 2, -5, 4, -6, 7, -4, 8, -2, 3, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L8a1 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2-3 t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial q^{5/2}-4 q^{3/2}+5 \sqrt{q}-\frac{7}{\sqrt{q}}+\frac{7}{q^{3/2}}-\frac{7}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{1}{q^{11/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 (-z)+2 a^3 z^3+2 a^3 z-a z^5-2 a z^3+z^3 a^{-1} -a z+a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial a^6 z^4-a^6 z^2+3 a^5 z^5-4 a^5 z^3+2 a^5 z+4 a^4 z^6-5 a^4 z^4+2 a^4 z^2+2 a^3 z^7+4 a^3 z^5-10 a^3 z^3+4 a^3 z+9 a^2 z^6-14 a^2 z^4+z^4 a^{-2} +5 a^2 z^2+2 a z^7+5 a z^5+4 z^5 a^{-1} -11 a z^3-5 z^3 a^{-1} +2 a z+a z^{-1} + a^{-1} z^{-1} +5 z^6-7 z^4+2 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
6        1-1
4       3 3
2      21 -1
0     53  2
-2    44   0
-4   33    0
-6  24     2
-8 13      -2
-10 2       2
-121        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L7n2.gif

L7n2

L8a2.gif

L8a2