L8n6

From Knot Atlas
Jump to: navigation, search

L8n5.gif

L8n5

L8n7.gif

L8n7

Contents

L8n6.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8n6 at Knotilus!

L8n6 is 8^3_{10} in the Rolfsen table of links.


Link Presentations

[edit Notes on L8n6's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,16,12,13 X7,14,8,15 X13,8,14,9 X15,12,16,5 X2536 X4,9,1,10
Gauss code {1, -7, 2, -8}, {-5, 4, -6, 3}, {7, -1, -4, 5, 8, -2, -3, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L8n6 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(3)-1) (t(3)+1) (t(1) t(2)+t(3))}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial  q^{-2} + q^{-6} + q^{-7} + q^{-9} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^{10} z^{-2} -2 a^8 z^{-2} -2 a^8+a^6 z^{-2} +z^4 a^4+4 z^2 a^4+2 a^4 (db)
Kauffman polynomial a^{10} z^6-6 a^{10} z^4+10 a^{10} z^2+a^{10} z^{-2} -6 a^{10}+a^9 z^5-6 a^9 z^3+8 a^9 z-2 a^9 z^{-1} +a^8 z^6-7 a^8 z^4+14 a^8 z^2+2 a^8 z^{-2} -9 a^8+a^7 z^5-6 a^7 z^3+8 a^7 z-2 a^7 z^{-1} +a^6 z^{-2} -2 a^6+a^4 z^4-4 a^4 z^2+2 a^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-3        11
-5        11
-7     11  0
-9         0
-11   131   1
-13    2    2
-15  1      1
-171        1
-191        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-8 {\mathbb Z} {\mathbb Z}
r=-7
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8n5.gif

L8n5

L8n7.gif

L8n7