L9a11

From Knot Atlas
Jump to: navigation, search

L9a10.gif

L9a10

L9a12.gif

L9a12

Contents

L9a11.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a11 at Knotilus!

L9a11 is 9^2_{26} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a11's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X14,8,15,7 X18,16,5,15 X16,9,17,10 X8,17,9,18 X10,14,11,13 X2536 X4,11,1,12
Gauss code {1, -8, 2, -9}, {8, -1, 3, -6, 5, -7, 9, -2, 7, -3, 4, -5, 6, -4}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L9a11 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^3-4 u v^2+6 u v-2 u-2 v^3+6 v^2-4 v+1}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\frac{5}{q^{9/2}}+\frac{7}{q^{7/2}}+q^{5/2}-\frac{9}{q^{5/2}}-4 q^{3/2}+\frac{9}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}+6 \sqrt{q}-\frac{8}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 z^{-1} -3 a^5 z-2 a^5 z^{-1} +3 a^3 z^3+4 a^3 z+2 a^3 z^{-1} -a z^5-2 a z^3+z^3 a^{-1} -3 a z-a z^{-1} (db)
Kauffman polynomial -a^4 z^8-a^2 z^8-2 a^5 z^7-6 a^3 z^7-4 a z^7-2 a^6 z^6-5 a^4 z^6-9 a^2 z^6-6 z^6-a^7 z^5+5 a^3 z^5-4 z^5 a^{-1} +4 a^6 z^4+12 a^4 z^4+17 a^2 z^4-z^4 a^{-2} +8 z^4+3 a^7 z^3+7 a^5 z^3+7 a^3 z^3+7 a z^3+4 z^3 a^{-1} -2 a^6 z^2-7 a^4 z^2-7 a^2 z^2-2 z^2-3 a^7 z-7 a^5 z-8 a^3 z-4 a z+a^4+a^7 z^{-1} +2 a^5 z^{-1} +2 a^3 z^{-1} +a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
6         1-1
4        3 3
2       31 -2
0      53  2
-2     54   -1
-4    44    0
-6   35     2
-8  24      -2
-10 14       3
-12 1        -1
-141         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a10.gif

L9a10

L9a12.gif

L9a12