L9a23

From Knot Atlas
Jump to: navigation, search

L9a22.gif

L9a22

L9a24.gif

L9a24

Contents

L9a23.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a23 at Knotilus!

L9a23 is 9^2_{22} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a23's Link Presentations]

Planar diagram presentation X8192 X10,3,11,4 X18,16,7,15 X14,5,15,6 X4,13,5,14 X12,18,13,17 X16,12,17,11 X2738 X6,9,1,10
Gauss code {1, -8, 2, -5, 4, -9}, {8, -1, 9, -2, 7, -6, 5, -4, 3, -7, 6, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L9a23 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^4+t(1)^2 t(2)^3-3 t(1) t(2)^3+2 t(2)^3-2 t(1)^2 t(2)^2+5 t(1) t(2)^2-2 t(2)^2+2 t(1)^2 t(2)-3 t(1) t(2)+t(2)+t(1)}{t(1) t(2)^2} (db)
Jones polynomial q^{5/2}-3 q^{3/2}+5 \sqrt{q}-\frac{7}{\sqrt{q}}+\frac{8}{q^{3/2}}-\frac{8}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^3+2 a^5 z+2 a^5 z^{-1} -a^3 z^5-3 a^3 z^3-5 a^3 z-3 a^3 z^{-1} -a z^5-2 a z^3+z^3 a^{-1} -a z+a z^{-1} +z a^{-1} (db)
Kauffman polynomial -a^4 z^8-a^2 z^8-3 a^5 z^7-6 a^3 z^7-3 a z^7-2 a^6 z^6-4 a^4 z^6-6 a^2 z^6-4 z^6-a^7 z^5+8 a^5 z^5+13 a^3 z^5+a z^5-3 z^5 a^{-1} +4 a^6 z^4+13 a^4 z^4+15 a^2 z^4-z^4 a^{-2} +5 z^4+3 a^7 z^3-10 a^5 z^3-15 a^3 z^3+2 a z^3+4 z^3 a^{-1} -a^6 z^2-11 a^4 z^2-13 a^2 z^2+z^2 a^{-2} -2 z^2-2 a^7 z+8 a^5 z+11 a^3 z-z a^{-1} +3 a^4+3 a^2+1-2 a^5 z^{-1} -3 a^3 z^{-1} -a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
6         1-1
4        2 2
2       31 -2
0      42  2
-2     54   -1
-4    33    0
-6   35     2
-8  23      -1
-10  3       3
-1212        -1
-141         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a22.gif

L9a22

L9a24.gif

L9a24