L9a43

From Knot Atlas
Jump to: navigation, search

L9a42.gif

L9a42

L9a44.gif

L9a44

Contents

L9a43.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a43 at Knotilus!

L9a43 is 9^3_{4} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a43's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X16,11,17,12 X18,15,9,16 X12,17,13,18 X2536 X4,9,1,10
Gauss code {1, -8, 2, -9}, {8, -1, 3, -4}, {9, -2, 5, -7, 4, -3, 6, -5, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a43 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(3)^3+t(2) t(3)^3-t(3)^3-3 t(1) t(3)^2+2 t(1) t(2) t(3)^2-3 t(2) t(3)^2+2 t(3)^2+3 t(1) t(3)-2 t(1) t(2) t(3)+3 t(2) t(3)-2 t(3)-t(1)+t(1) t(2)-t(2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial - q^{-11} +2 q^{-10} -5 q^{-9} +8 q^{-8} -8 q^{-7} +10 q^{-6} -7 q^{-5} +7 q^{-4} -3 q^{-3} + q^{-2} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{12} z^{-2} +4 a^{10} z^{-2} +4 a^{10}-6 a^8 z^2-5 a^8 z^{-2} -11 a^8+3 a^6 z^4+8 a^6 z^2+2 a^6 z^{-2} +7 a^6+a^4 z^4+a^4 z^2 (db)
Kauffman polynomial a^{13} z^5-3 a^{13} z^3+3 a^{13} z-a^{13} z^{-1} +2 a^{12} z^6-4 a^{12} z^4+3 a^{12} z^2+a^{12} z^{-2} -2 a^{12}+2 a^{11} z^7+a^{11} z^5-11 a^{11} z^3+13 a^{11} z-5 a^{11} z^{-1} +a^{10} z^8+6 a^{10} z^6-16 a^{10} z^4+14 a^{10} z^2+4 a^{10} z^{-2} -10 a^{10}+6 a^9 z^7-3 a^9 z^5-16 a^9 z^3+21 a^9 z-9 a^9 z^{-1} +a^8 z^8+10 a^8 z^6-24 a^8 z^4+23 a^8 z^2+5 a^8 z^{-2} -14 a^8+4 a^7 z^7-10 a^7 z^3+11 a^7 z-5 a^7 z^{-1} +6 a^6 z^6-11 a^6 z^4+11 a^6 z^2+2 a^6 z^{-2} -7 a^6+3 a^5 z^5-2 a^5 z^3+a^4 z^4-a^4 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        31-2
-7       4  4
-9      33  0
-11     74   3
-13    46    2
-15   44     0
-17  14      3
-19 14       -3
-21 1        1
-231         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a42.gif

L9a42

L9a44.gif

L9a44