L9a49

From Knot Atlas
Jump to: navigation, search

L9a48.gif

L9a48

L9a50.gif

L9a50

Contents

L9a49.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a49 at Knotilus!

L9a49 is 9^3_{6} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a49's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X16,10,17,9 X14,8,15,7 X18,14,11,13 X10,16,5,15 X8,18,9,17 X2536 X4,11,1,12
Gauss code {1, -8, 2, -9}, {8, -1, 4, -7, 3, -6}, {9, -2, 5, -4, 6, -3, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a49 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^2 w-u v^2+u v w^2-3 u v w+2 u v-u w^2+2 u w-2 v^2 w+v^2-2 v w^2+3 v w-v+w^2-w}{\sqrt{u} v w} (db)
Jones polynomial -q^5+3 q^4+ q^{-4} -4 q^3-2 q^{-3} +7 q^2+5 q^{-2} -7 q-6 q^{-1} +8 (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^2 a^{-4} +a^4+z^4 a^{-2} -2 a^2 z^2+a^2 z^{-2} +z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} +z^4-z^2-2 z^{-2} -3 (db)
Kauffman polynomial z^8 a^{-2} +z^8+2 a z^7+5 z^7 a^{-1} +3 z^7 a^{-3} +3 a^2 z^6+4 z^6 a^{-2} +3 z^6 a^{-4} +4 z^6+2 a^3 z^5+2 a z^5-7 z^5 a^{-1} -6 z^5 a^{-3} +z^5 a^{-5} +a^4 z^4-4 a^2 z^4-13 z^4 a^{-2} -8 z^4 a^{-4} -10 z^4-2 a^3 z^3-7 a z^3-z^3 a^{-1} +2 z^3 a^{-3} -2 z^3 a^{-5} -2 a^4 z^2+4 a^2 z^2+11 z^2 a^{-2} +5 z^2 a^{-4} +12 z^2+6 a z+6 z a^{-1} +a^4-3 a^2-5 a^{-2} -8-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
11         1-1
9        2 2
7       21 -1
5      52  3
3     44   0
1    43    1
-1   35     2
-3  23      -1
-5  3       3
-712        -1
-91         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-4 {\mathbb Z} {\mathbb Z}
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a48.gif

L9a48

L9a50.gif

L9a50