L9n24

From Knot Atlas
Jump to: navigation, search

L9n23.gif

L9n23

L9n25.gif

L9n25

Contents

L9n24.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n24 at Knotilus!

L9n24 is 9^3_{14} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n24's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X3849 X2,14,3,13 X14,7,15,8 X11,16,12,17 X9,11,10,18 X17,5,18,10 X15,1,16,4
Gauss code {1, -4, -3, 9}, {-2, -1, 5, 3, -7, 8}, {-6, 2, 4, -5, -9, 6, -8, 7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L9n24 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v w^2-2 u v w-u w^2+u w+v^2 (-w)+v^2+2 v w-v}{\sqrt{u} v w} (db)
Jones polynomial 2 q^2-2 q+4-3 q^{-1} +4 q^{-2} -2 q^{-3} +2 q^{-4} - q^{-5} (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^2 a^4-a^4+z^4 a^2+3 z^2 a^2+a^2 z^{-2} +4 a^2-3 z^2-2 z^{-2} -5+ a^{-2} z^{-2} +2 a^{-2} (db)
Kauffman polynomial a^5 z^5-3 a^5 z^3+a^5 z+2 a^4 z^6-7 a^4 z^4+6 a^4 z^2-2 a^4+a^3 z^7-a^3 z^5-4 a^3 z^3+3 a^3 z+4 a^2 z^6-14 a^2 z^4+17 a^2 z^2+3 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -8 a^2-4 a^{-2} +a z^7-a z^5+z^5 a^{-1} -2 a z^3-z^3 a^{-1} +5 a z+3 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +2 z^6-7 z^4+14 z^2+2 z^{-2} -9 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-1012χ
5       22
3      110
1     31 2
-1    23  1
-3   21   1
-5  13    2
-7 11     0
-9 1      1
-111       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n23.gif

L9n23

L9n25.gif

L9n25