L9n7

From Knot Atlas
Jump to: navigation, search

L9n6.gif

L9n6

L9n8.gif

L9n8

Contents

L9n7.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n7 at Knotilus!

L9n7 is 9^2_{48} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n7's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X3849 X9,14,10,15 X13,10,14,11 X11,18,12,5 X15,2,16,3
Gauss code {1, 9, -5, -3}, {-4, -1, 2, 5, -6, 7, -8, 4, -7, 6, -9, -2, 3, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9n7 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u v^3-2 u v^2+u v+v^2-2 v+2}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\frac{1}{q^{5/2}}+\frac{1}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{4}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{3}{q^{17/2}}+\frac{2}{q^{19/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^{11} z^{-1} +z^3 a^9+3 z a^9+2 a^9 z^{-1} -z^5 a^7-3 z^3 a^7-z a^7-z^5 a^5-4 z^3 a^5-4 z a^5-a^5 z^{-1} (db)
Kauffman polynomial 3 a^{12} z^2-2 a^{12}+a^{11} z^5+a^{11} z^3-2 a^{11} z+a^{11} z^{-1} +2 a^{10} z^6-6 a^{10} z^4+11 a^{10} z^2-5 a^{10}+a^9 z^7-2 a^9 z^5+5 a^9 z^3-6 a^9 z+2 a^9 z^{-1} +3 a^8 z^6-8 a^8 z^4+7 a^8 z^2-3 a^8+a^7 z^7-2 a^7 z^5+a^6 z^6-2 a^6 z^4-a^6 z^2+a^6+a^5 z^5-4 a^5 z^3+4 a^5 z-a^5 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-4       11
-6      110
-8     2  2
-10    11  0
-12   32   1
-14  12    1
-16 22     0
-18 1      1
-202       -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n6.gif

L9n6

L9n8.gif

L9n8