Rolfsen Splice Base: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(19 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- <* (* -->{{Splice Template Notice}}<!-- *) *> -->
<!-- <* (* -->{{Splice Base Notice}}<!-- *) *> -->
<!-- <*{n,k}=(K /. Knot[n_,k_]:>{n,k});*> -->
<!-- -->
{{Rolfsen Knot Page|
<!-- <*K=Knot[ThisKnot];{n,k}=List@@K;*> -->
n = <*n*> |
<!-- -->
k = <*k*> |
<!-- provide an anchor so we can return to the top of the page -->
same_alexander = <* alex = Alexander[K][t];
<span id="top"></span>
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K];
<!-- -->
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]]
<!-- this relies on transclusion for next and previous links -->
*> |
{{Knot Navigation Links|ext=gif}}
same_jones = <* J = Jones[K][q];

others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&], K];
{{Rolfsen Knot Page Header|n=<*n*>|k=<*k*>|KnotilusURL=<*KnotilusURL[K]*>}}
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]]

*> |
<br style="clear:both" />
coloured_jones_2 = <*ColouredJones[K, 2][q]*> |

coloured_jones_3 = <*ColouredJones[K, 3][q]*> |
{{:{{PAGENAME}} Further Notes and Views}}
coloured_jones_4 = <*ColouredJones[K, 4][q]*> |

coloured_jones_5 = <*ColouredJones[K, 5][q]*> |
{{Knot Presentations}}
coloured_jones_6 = <*ColouredJones[K, 6][q]*> |

coloured_jones_7 = <*ColouredJones[K, 7][q]*>
{{Minimum Braid and Morse Link Presentation|
}}
braidtable= <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif",
"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> |
braidcrossings= <*Crossings[BR[K]]*> |
braidwidth= <*First[BR[K]]*> |
braidindex= <*BraidIndex[K]*>}}

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

{{Similar Knots|
same_alexander= <* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K];
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]]
*> |
same_jones= <* J = Jones[Knot[n,k]][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&], K];
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]]
*>}}
{{Vassiliev Invariants}}

{{Khovanov Homology|table=<*TabularKh[Kh[K][q, t], KnotSignature[K]+{1,-1}]*>}}

{{Display Coloured Jones|
J2 = <*ColouredJones[K, 2][q]*> |
J3 = <*ColouredJones[K, 3][q]*> |
J4 = <*ColouredJones[K, 4][q]*> |
J5 = <*ColouredJones[K, 5][q]*> |
J6 = <*ColouredJones[K, 6][q]*> |
J7 = <*ColouredJones[K, 7][q]*> }}

{{Computer Talk Header}}
{{Computer Talk|
contents=<*InOut["PD[``]", K]*>
<*InOut["GaussCode[``]", K]*>
<*InOut["DTCode[``]", K]*>
<*InOut["br = BR[``]", K]*>
<*InOut["{First[br], Crossings[br]}"]*>
<*InOut["BraidIndex[``]", K]*>
<*GraphicsBox["`1`_`2`_ML.gif", "Show[DrawMorseLink[Knot[`1`, `2`]]]", n, k]*>
<*InOut[
"(#[``]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}", K
]*>
<*InOut["alex = Alexander[``][t]", K]*>
<*InOut["Conway[``][z]", K]*>
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*>
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*>
<*InOut["Jones[``][q]", K]*>
<*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*>
<*InOut["A2Invariant[``][q]", K]*>
<*InOut["HOMFLYPT[``][a, z]", K]*>
<*InOut["Kauffman[``][a, z]", K]*>
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K]*>
<*InOut["Kh[``][q, t]", K]*>
<* If[ColouredJones[K, 2] === NotAvailable, "",
InOut["ColouredJones[``, 2][q]", K]
] *> }}
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em"><*InOut[1]; KnotTheoryWelcomeMessage[]*></pre></td></tr>

<*InOut["PD[``]", K]*>

<*InOut["GaussCode[``]", K]*>

<*InOut["DTCode[``]", K]*>

<*InOut["br = BR[``]", K]*>

<*InOut["{First[br], Crossings[br]}"]*>

<*InOut["BraidIndex[``]", K]*>

<*GraphicsBox["`1`_`2`_ML.gif", "Show[DrawMorseLink[Knot[`1`, `2`]]]", n, k]*>

<*InOut[
"(#[``]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}", K
]*>

<*InOut["alex = Alexander[``][t]", K]*>

<*InOut["Conway[``][z]", K]*>

<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*>

<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*>

<*InOut["Jones[``][q]", K]*>

<*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*>

<*InOut["A2Invariant[``][q]", K]*>

<*InOut["HOMFLYPT[``][a, z]", K]*>

<*InOut["Kauffman[``][a, z]", K]*>

<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K]*>

<*InOut["Kh[``][q, t]", K]*>

<* If[ColouredJones[K, 2] === NotAvailable, "",
InOut["ColouredJones[``, 2][q]", K]
] *>

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

<* (* <!-- *) *> [[Category:Knot Page]] <* (* --> *) *>

Latest revision as of 14:55, 23 June 2006

Stop hand.png This page is a 'splice base'.
It is used to generate knot pages for each knot in a certain knot table. Be careful editting! Changes will not be reflected on individual knot pages until the 'splicer' is run again.

[[Image:Data:Rolfsen Splice Base/Previous Knot.gif|80px|link=Data:Rolfsen Splice Base/Previous Knot]]

[[Data:Rolfsen Splice Base/Previous Knot]]

[[Image:Data:Rolfsen Splice Base/Next Knot.gif|80px|link=Data:Rolfsen Splice Base/Next Knot]]

[[Data:Rolfsen Splice Base/Next Knot]]

File:Rolfsen Splice Base.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit <*n*>&id=<*k*> Rolfsen Splice Base's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit Rolfsen Splice Base at Knotilus!


Knot presentations

Planar diagram presentation Data:Rolfsen Splice Base/PD Presentation
Gauss code Data:Rolfsen Splice Base/Gauss Code
Dowker-Thistlethwaite code Data:Rolfsen Splice Base/DT Code
Conway Notation Data:Rolfsen Splice Base/Conway Notation


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
Data:Rolfsen Splice Base/BraidPlot
Length is Data:Rolfsen Splice Base/MinimalBraidLength, width is Data:Rolfsen Splice Base/MinimalBraidWidth,

Braid index is Data:Rolfsen Splice Base/BraidIndex

File:Rolfsen Splice Base ML.gif File:Rolfsen Splice Base AP.gif
Data:Rolfsen Splice Base/Arc Presentation

[edit Notes on presentations of Rolfsen Splice Base]


Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus Missing
Rasmussen s-Invariant Missing

[edit Notes for Rolfsen Splice Base's four dimensional invariants]

Polynomial invariants

Alexander polynomial Data:Rolfsen Splice Base/Alexander Polynomial
Conway polynomial Data:Rolfsen Splice Base/Conway Polynomial
2nd Alexander ideal (db, data sources) Data:Rolfsen Splice Base/2nd AlexanderIdeal
Determinant and Signature { Data:Rolfsen Splice Base/Determinant, Data:Rolfsen Splice Base/Signature }
Jones polynomial Data:Rolfsen Splice Base/Jones Polynomial
HOMFLY-PT polynomial (db, data sources) Data:Rolfsen Splice Base/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:Rolfsen Splice Base/Kauffman Polynomial
The A2 invariant Data:Rolfsen Splice Base/QuantumInvariant/A2/1,0
The G2 invariant Data:Rolfsen Splice Base/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {<* alex = Alexander[K][t];

                     others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K];
                     If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]]
                 *>}

Same Jones Polynomial (up to mirroring, ): {<* J = Jones[K][q];

                   others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]}

Vassiliev invariants

V2 and V3: (Data:Rolfsen Splice Base/V 2, Data:Rolfsen Splice Base/V 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:Rolfsen Splice Base/V 2,1 Data:Rolfsen Splice Base/V 3,1 Data:Rolfsen Splice Base/V 4,1 Data:Rolfsen Splice Base/V 4,2 Data:Rolfsen Splice Base/V 4,3 Data:Rolfsen Splice Base/V 5,1 Data:Rolfsen Splice Base/V 5,2 Data:Rolfsen Splice Base/V 5,3 Data:Rolfsen Splice Base/V 5,4 Data:Rolfsen Splice Base/V 6,1 Data:Rolfsen Splice Base/V 6,2 Data:Rolfsen Splice Base/V 6,3 Data:Rolfsen Splice Base/V 6,4 Data:Rolfsen Splice Base/V 6,5 Data:Rolfsen Splice Base/V 6,6 Data:Rolfsen Splice Base/V 6,7 Data:Rolfsen Splice Base/V 6,8 Data:Rolfsen Splice Base/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Rolfsen Splice Base/Signature is the signature of Rolfsen Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.    Data:Rolfsen Splice Base/KhovanovTable
Integral Khovanov Homology

(db, data source)

   Data:Rolfsen Splice Base/Integral Khovanov Homology

The Coloured Jones Polynomials