Finite Type (Vassiliev) Invariants
(For In[1] see Setup)
| ||||
Thus, for example, let us reproduce Willerton's "fish" (arXiv:math.GT/0104061), the result of plotting the values of [math]\displaystyle{ V_2(K) }[/math] against the values of [math]\displaystyle{ \pm V_3(K) }[/math], where [math]\displaystyle{ V_2(K) }[/math] is the (standardly normalized) type 2 invariant of [math]\displaystyle{ K }[/math], [math]\displaystyle{ V_3(K) }[/math] is the (standardly normalized) type 3 invariant of [math]\displaystyle{ K }[/math], and where [math]\displaystyle{ K }[/math] runs over a set of knots with equal crossing numbers (10, in the example below):
As another example, let us consider the expansion of the Jones polynomial for a knot [math]\displaystyle{ K }[/math] as a power series in [math]\displaystyle{ x }[/math] when we substitute the standard variable [math]\displaystyle{ q }[/math] with [math]\displaystyle{ e^x }[/math] and use the power series expansion of [math]\displaystyle{ e^x }[/math]:
Then, for the above coefficients we have that [math]\displaystyle{ V_0(K)=1 }[/math] and for all [math]\displaystyle{ n\ge 1 }[/math] [math]\displaystyle{ V_n }[/math] is a Vassiliev invariant of type [math]\displaystyle{ n }[/math] [BirmanLin]. We can see this result by using the invariant formula:
to check the Birman-Lin condition, which tells us that an invariant [math]\displaystyle{ V }[/math] is of type [math]\displaystyle{ m }[/math] if it vanishes on knots with more than [math]\displaystyle{ m }[/math] double points, or self intersections (see [Bar-Natan]). Computing [math]\displaystyle{ V }[/math] on knots with more than one double point by resolving one self intersection at a time, it is enough to check that [math]\displaystyle{ V }[/math] vanishes on knots with [math]\displaystyle{ m+1 }[/math] double points:
The following two programs let us determine [math]\displaystyle{ V_n(K) }[/math] for any integer [math]\displaystyle{ n }[/math] and knot [math]\displaystyle{ K }[/math]:
In[4]:=
|
SetCrossing[K_, l_Integer, s_] := Module[
{pd, n},
pd = PD[K];
If[PositiveQ[pd[[l]]],
If[s == "-", pd[[l]] = RotateRight@pd[[l]]],
If[s == "+", pd[[l]] = RotateLeft@pd[[l]]]];
pd];
|
In[5]:=
|
V[K_, n_] := Series[Jones[K][Exp[x]], {x, 0, n}];
V[K_, n_, {i1_, is___}] :=
V[SetCrossing[K, i1, "+"], n, {is}] -
V[SetCrossing[K, i1, "-"], n, {is}];
V[K_, n_, {}] := V[K, n];
|
The first program, SetCrossing, sets the [math]\displaystyle{ l^{th} }[/math] crossing of a knot [math]\displaystyle{ K }[/math] to be positive or negative depending on whether we choose [math]\displaystyle{ s }[/math] to be "[math]\displaystyle{ + }[/math]" or "[math]\displaystyle{ - }[/math]". The second program uses the invariant formula to give the series expansion of the Jones polynomial of a knot [math]\displaystyle{ K }[/math] discussed above, up to order [math]\displaystyle{ x^n }[/math], where a selected list of the crossings of [math]\displaystyle{ K }[/math] are taken as double points. [math]\displaystyle{ V_n(K) }[/math] is then the coefficient of the term containing [math]\displaystyle{ x^n }[/math].
For example, we can check that [math]\displaystyle{ V_4 }[/math] disappears on the knot 9_47 with its first five crossings taken as double points:
In[6]:=
|
V[Knot[9, 47], 4, {1, 2, 3, 4, 5}]
|
Out[6]=
|
V[Knot[9, 47], 4, {1, 2, 3, 4, 5}]
|
[Bar-Natan] ^ D. Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
[BirmanLin] ^ J.S. Birman and X.-S. Lin, Knot Polynomials and Vassiliev's Invariants, Invent. Math. 111 (1993) 225-270.
