Rolfsen Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
(17 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- <* (* -->{{Splice |
<!-- <* (* -->{{Splice Base Notice}}<!-- *) *> --> |
||
<!-- <*{n,k}=(K /. Knot[n_,k_]:>{n,k});*> --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- <*K=Knot[ThisKnot];{n,k}=List@@K;*> --> |
|||
n = <*n*> | |
|||
<!-- --> |
|||
k = <*k*> | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
same_alexander = <* alex = Alexander[K][t]; |
|||
<span id="top"></span> |
|||
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; |
|||
<!-- --> |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
*> | |
|||
{{Knot Navigation Links|ext=gif}} |
|||
same_jones = <* J = Jones[K][q]; |
|||
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&], K]; |
|||
{{Rolfsen Knot Page Header|n=<*n*>|k=<*k*>|KnotilusURL=<*KnotilusURL[K]*>}} |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
*> | |
|||
<br style="clear:both" /> |
|||
coloured_jones_2 = <*ColouredJones[K, 2][q]*> | |
|||
coloured_jones_3 = <*ColouredJones[K, 3][q]*> | |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
coloured_jones_4 = <*ColouredJones[K, 4][q]*> | |
|||
coloured_jones_5 = <*ColouredJones[K, 5][q]*> | |
|||
{{Knot Presentations}} |
|||
coloured_jones_6 = <*ColouredJones[K, 6][q]*> | |
|||
coloured_jones_7 = <*ColouredJones[K, 7][q]*> |
|||
{{Minimum Braid and Morse Link Presentation| |
|||
}} |
|||
braidtable= <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif", |
|||
"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> | |
|||
braidcrossings= <*Crossings[BR[K]]*> | |
|||
braidwidth= <*First[BR[K]]*> | |
|||
braidindex= <*BraidIndex[K]*>}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Similar Knots| |
|||
same_alexander= <* alex = Alexander[K][t]; |
|||
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
*> | |
|||
same_jones= <* J = Jones[Knot[n,k]][q]; |
|||
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&], K]; |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
*>}} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<*TabularKh[Kh[K][q, t], KnotSignature[K]+{1,-1}]*>}} |
|||
{{Display Coloured Jones| |
|||
J2 = <*ColouredJones[K, 2][q]*> | |
|||
J3 = <*ColouredJones[K, 3][q]*> | |
|||
J4 = <*ColouredJones[K, 4][q]*> | |
|||
J5 = <*ColouredJones[K, 5][q]*> | |
|||
J6 = <*ColouredJones[K, 6][q]*> | |
|||
J7 = <*ColouredJones[K, 7][q]*> }} |
|||
{{Computer Talk Header}} |
|||
{{Computer Talk| |
|||
welcome_message = <*InOut[1]; KnotTheoryWelcomeMessage[]*> | |
|||
contents = <*InOut["PD[``]", K]*> |
|||
<*InOut["GaussCode[``]", K]*> |
|||
<*InOut["DTCode[``]", K]*> |
|||
<*InOut["br = BR[``]", K]*> |
|||
<*InOut["{First[br], Crossings[br]}"]*> |
|||
<*InOut["BraidIndex[``]", K]*> |
|||
<*GraphicsBox["`1`_`2`_ML.gif", "Show[DrawMorseLink[Knot[`1`, `2`]]]", n, k]*> |
|||
<*InOut[ |
|||
"(#[``]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}", K |
|||
]*> |
|||
<*InOut["alex = Alexander[``][t]", K]*> |
|||
<*InOut["Conway[``][z]", K]*> |
|||
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> |
|||
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> |
|||
<*InOut["Jones[``][q]", K]*> |
|||
<*InOut[ |
|||
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]" |
|||
]*> |
|||
<*InOut["A2Invariant[``][q]", K]*> |
|||
<*InOut["HOMFLYPT[``][a, z]", K]*> |
|||
<*InOut["Kauffman[``][a, z]", K]*> |
|||
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K]*> |
|||
<*InOut["Kh[``][q, t]", K]*> |
|||
<* If[ColouredJones[K, 2] === NotAvailable, "", |
|||
InOut["ColouredJones[``, 2][q]", K] |
|||
] *> }} |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
<* (* <!-- *) *> [[Category:Knot Page]] <* (* --> *) *> |
Latest revision as of 14:55, 23 June 2006
[[Image:Data:Rolfsen Splice Base/Previous Knot.gif|80px|link=Data:Rolfsen Splice Base/Previous Knot]] |
[[Image:Data:Rolfsen Splice Base/Next Knot.gif|80px|link=Data:Rolfsen Splice Base/Next Knot]] |
File:Rolfsen Splice Base.gif (KnotPlot image) |
See the full Rolfsen Knot Table. Visit <*n*>&id=<*k*> Rolfsen Splice Base's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit Rolfsen Splice Base at Knotilus! |
Knot presentations
[edit Notes on presentations of Rolfsen Splice Base]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["Rolfsen Splice Base"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Rolfsen Splice Base/PD Presentation |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
Data:Rolfsen Splice Base/Gauss Code |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
Data:Rolfsen Splice Base/DT Code |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
Data:Rolfsen Splice Base/Conway Notation |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Data:Rolfsen Splice Base/BraidWord |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ Data:Rolfsen Splice Base/MinimalBraidWidth, Data:Rolfsen Splice Base/MinimalBraidLength, Data:Rolfsen Splice Base/BraidIndex } |
In[11]:=
|
Show[BraidPlot[br]]
|
Data:Rolfsen Splice Base/BraidPlot |
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
File:Rolfsen Splice Base ML.gif |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentationData:Rolfsen Splice Base/Arc Presentation |
In[14]:=
|
Draw[ap]
|
File:Rolfsen Splice Base AP.gif |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
[edit Notes for Rolfsen Splice Base's three dimensional invariants] |
Four dimensional invariants
|
[edit Notes for Rolfsen Splice Base's four dimensional invariants] |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["Rolfsen Splice Base"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Rolfsen Splice Base/Alexander Polynomial |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Data:Rolfsen Splice Base/Conway Polynomial |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Data:Rolfsen Splice Base/2nd AlexanderIdeal |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ Data:Rolfsen Splice Base/Determinant, Data:Rolfsen Splice Base/Signature } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Data:Rolfsen Splice Base/Jones Polynomial |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:Rolfsen Splice Base/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:Rolfsen Splice Base/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["Rolfsen Splice Base"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Data:Rolfsen Splice Base/Alexander Polynomial, Data:Rolfsen Splice Base/Jones Polynomial } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]} |
Vassiliev invariants
V2 and V3: | (Data:Rolfsen Splice Base/V 2, Data:Rolfsen Splice Base/V 3) |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Rolfsen Splice Base/Signature is the signature of Rolfsen Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:Rolfsen Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Rolfsen Splice Base/Integral Khovanov Homology |
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | |
2 | <*ColouredJones[K, 2][q]*> |
3 | <*ColouredJones[K, 3][q]*> |
4 | <*ColouredJones[K, 4][q]*> |
5 | <*ColouredJones[K, 5][q]*> |
6 | <*ColouredJones[K, 6][q]*> |
7 | <*ColouredJones[K, 7][q]*> |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|