L9a28: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 28 | |
k = 28 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-9,4,-8:8,-1,2,-3,6,-7,9,-4,5,-6,7,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-9,4,-8:8,-1,2,-3,6,-7,9,-4,5,-6,7,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
| Line 47: | Line 47: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 28]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 28]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
||
Latest revision as of 02:24, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a28 is [math]\displaystyle{ 9^2_{20} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a28's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X18,16,7,15 X16,12,17,11 X12,18,13,17 X6718 X4,13,5,14 |
| Gauss code | {1, -2, 3, -9, 4, -8}, {8, -1, 2, -3, 6, -7, 9, -4, 5, -6, 7, -5} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1)^2 t(2)^4-2 t(1)^2 t(2)^3+2 t(1) t(2)^3+2 t(1)^2 t(2)^2-3 t(1) t(2)^2+2 t(2)^2+2 t(1) t(2)-2 t(2)+1}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{5}{q^{9/2}}-\frac{6}{q^{7/2}}+\frac{5}{q^{5/2}}+q^{3/2}-\frac{5}{q^{3/2}}-\frac{1}{q^{15/2}}+\frac{2}{q^{13/2}}-\frac{4}{q^{11/2}}-2 \sqrt{q}+\frac{3}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^5+4 a^5 z^3+5 a^5 z+2 a^5 z^{-1} -a^3 z^7-6 a^3 z^5-13 a^3 z^3-12 a^3 z-3 a^3 z^{-1} +a z^5+4 a z^3+4 a z+a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^3-a^9 z+2 a^8 z^4-a^8 z^2+3 a^7 z^5-3 a^7 z^3+2 a^7 z+3 a^6 z^6-3 a^6 z^4+a^6 z^2+3 a^5 z^7-7 a^5 z^5+9 a^5 z^3-7 a^5 z+2 a^5 z^{-1} +a^4 z^8+2 a^4 z^6-11 a^4 z^4+10 a^4 z^2-3 a^4+5 a^3 z^7-18 a^3 z^5+22 a^3 z^3-14 a^3 z+3 a^3 z^{-1} +a^2 z^8-10 a^2 z^4+12 a^2 z^2-3 a^2+2 a z^7-8 a z^5+9 a z^3-4 a z+a z^{-1} +z^6-4 z^4+4 z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



