L9a29
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a29 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{19}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a29's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X6718 X16,11,17,12 X14,6,15,5 X4,16,5,15 X18,13,7,14 X12,17,13,18 |
| Gauss code | {1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 5, -9, 8, -6, 7, -5, 9, -8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u^2 v^4-u^2 v^3+u^2 v^2-u^2 v-u v^4+u v^3-u v^2+u v-u-v^3+v^2-v+1}{u v^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{4}{q^{9/2}}+\frac{4}{q^{11/2}}-\frac{4}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{2}{q^{17/2}}+\frac{1}{q^{19/2}}} (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 \left(-z^5\right)-4 a^7 z^3-4 a^7 z-a^7 z^{-1} +a^5 z^7+6 a^5 z^5+12 a^5 z^3+10 a^5 z+3 a^5 z^{-1} -a^3 z^5-5 a^3 z^3-7 a^3 z-2 a^3 z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{12} z^2+2 a^{11} z^3+3 a^{10} z^4-2 a^{10} z^2+4 a^9 z^5-7 a^9 z^3+2 a^9 z+4 a^8 z^6-10 a^8 z^4+5 a^8 z^2-a^8+3 a^7 z^7-9 a^7 z^5+6 a^7 z^3-3 a^7 z+a^7 z^{-1} +a^6 z^8-11 a^6 z^4+13 a^6 z^2-3 a^6+4 a^5 z^7-19 a^5 z^5+27 a^5 z^3-14 a^5 z+3 a^5 z^{-1} +a^4 z^8-4 a^4 z^6+2 a^4 z^4+5 a^4 z^2-3 a^4+a^3 z^7-6 a^3 z^5+12 a^3 z^3-9 a^3 z+2 a^3 z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



