L11a123: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 123 | |
k = 123 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,6,-8,7,-9,3,-4,11,-2,4,-3,5,-6,8,-7,9,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,6,-8,7,-9,3,-4,11,-2,4,-3,5,-6,8,-7,9,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
| Line 51: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 123]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 123]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:12, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a123's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X16,12,17,11 X12,16,13,15 X22,17,5,18 X18,7,19,8 X20,9,21,10 X8,19,9,20 X10,21,11,22 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 6, -8, 7, -9, 3, -4, 11, -2, 4, -3, 5, -6, 8, -7, 9, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^5-2 t(2)^5-4 t(1) t(2)^4+4 t(2)^4+4 t(1) t(2)^3-4 t(2)^3-4 t(1) t(2)^2+4 t(2)^2+4 t(1) t(2)-4 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{5}{q^{5/2}}+\frac{7}{q^{7/2}}-\frac{11}{q^{9/2}}+\frac{11}{q^{11/2}}-\frac{12}{q^{13/2}}+\frac{10}{q^{15/2}}-\frac{8}{q^{17/2}}+\frac{5}{q^{19/2}}-\frac{2}{q^{21/2}}+\frac{1}{q^{23/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{11} (-z)-2 a^{11} z^{-1} +3 a^9 z^3+9 a^9 z+5 a^9 z^{-1} -3 a^7 z^5-11 a^7 z^3-10 a^7 z-3 a^7 z^{-1} +a^5 z^7+4 a^5 z^5+4 a^5 z^3+a^5 z-a^3 z^5-3 a^3 z^3-a^3 z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^4 a^{14}+2 z^2 a^{14}-a^{14}-2 z^5 a^{13}+2 z^3 a^{13}-3 z^6 a^{12}+2 z^4 a^{12}-4 z^7 a^{11}+6 z^5 a^{11}-8 z^3 a^{11}+5 z a^{11}-2 a^{11} z^{-1} -3 z^8 a^{10}+9 z^4 a^{10}-13 z^2 a^{10}+5 a^{10}-2 z^9 a^9-2 z^7 a^9+14 z^5 a^9-20 z^3 a^9+15 z a^9-5 a^9 z^{-1} -z^{10} a^8-2 z^8 a^8+6 z^6 a^8+4 z^4 a^8-9 z^2 a^8+5 a^8-5 z^9 a^7+14 z^7 a^7-8 z^5 a^7-4 z^3 a^7+9 z a^7-3 a^7 z^{-1} -z^{10} a^6-2 z^8 a^6+16 z^6 a^6-17 z^4 a^6+5 z^2 a^6-3 z^9 a^5+11 z^7 a^5-10 z^5 a^5+2 z^3 a^5-3 z^8 a^4+13 z^6 a^4-15 z^4 a^4+3 z^2 a^4-z^7 a^3+4 z^5 a^3-4 z^3 a^3+z a^3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



