L11a124
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a124's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X16,12,17,11 X12,16,13,15 X22,17,5,18 X18,7,19,8 X8,21,9,22 X20,9,21,10 X10,19,11,20 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 6, -7, 8, -9, 3, -4, 11, -2, 4, -3, 5, -6, 9, -8, 7, -5} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 t(1) t(2)^3-4 t(2)^3-9 t(1) t(2)^2+10 t(2)^2+10 t(1) t(2)-9 t(2)-4 t(1)+2}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\sqrt{q}+\frac{4}{\sqrt{q}}-\frac{8}{q^{3/2}}+\frac{11}{q^{5/2}}-\frac{15}{q^{7/2}}+\frac{16}{q^{9/2}}-\frac{16}{q^{11/2}}+\frac{12}{q^{13/2}}-\frac{9}{q^{15/2}}+\frac{5}{q^{17/2}}-\frac{2}{q^{19/2}}+\frac{1}{q^{21/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{11} z^{-1} +3 z a^9+2 a^9 z^{-1} -3 z^3 a^7-2 z a^7+z^5 a^5-z^3 a^5-2 z a^5-a^5 z^{-1} +z^5 a^3-z a^3-z^3 a} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{12}+4 z^4 a^{12}-5 z^2 a^{12}+2 a^{12}-2 z^7 a^{11}+6 z^5 a^{11}-5 z^3 a^{11}+2 z a^{11}-a^{11} z^{-1} -2 z^8 a^{10}+z^6 a^{10}+10 z^4 a^{10}-13 z^2 a^{10}+5 a^{10}-2 z^9 a^9+z^7 a^9+4 z^5 a^9-4 z^3 a^9+5 z a^9-2 a^9 z^{-1} -z^{10} a^8-3 z^8 a^8+7 z^6 a^8-2 z^4 a^8-4 z^2 a^8+3 a^8-6 z^9 a^7+12 z^7 a^7-12 z^5 a^7+5 z^3 a^7-z a^7-z^{10} a^6-8 z^8 a^6+22 z^6 a^6-23 z^4 a^6+7 z^2 a^6-a^6-4 z^9 a^5+2 z^7 a^5+4 z^5 a^5-2 z^3 a^5-3 z a^5+a^5 z^{-1} -7 z^8 a^4+13 z^6 a^4-9 z^4 a^4+3 z^2 a^4-7 z^7 a^3+13 z^5 a^3-5 z^3 a^3+z a^3-4 z^6 a^2+6 z^4 a^2-z^5 a+z^3 a} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



