Gauss Codes: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 37: Line 37:
<!--$$GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}$$-->
<!--$$GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{| valign=top
{|
|<tt><font color=blue>In[3]:=</font></tt>
|<tt><font color=blue>In[3]:=</font></tt>
|<code><font color=red> GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}</font></code>
|<code><font color=red> GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}</font></code>
|-
|-
|<tt><font color=blue>Out[3]=</font></tt>
|<tt><font color=blue>Out[3]=</font></tt>
|<pre style="border: 0px">{GaussCode[-1, 3, -2, 1, -3, 2],
|<pre style="border: 0px">{GaussCode[-1, 3, -2, 1, -3, 2], GaussCode[{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}]}</pre>
GaussCode[{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}]}</pre>
|}
|}
<!--END-->
<!--END-->
Line 65: Line 63:
<!--$$KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}$$-->
<!--$$KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{| valign=top
{|
|<tt><font color=blue>In[5]:=</font></tt>
|<tt><font color=blue>In[5]:=</font></tt>
|<code><font color=red> KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}</font></code>
|<code><font color=red> KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}</font></code>
Line 72: Line 70:
|<pre style="border: 0px">{http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,3,-2,1,-3,2/goTop.html,
|<pre style="border: 0px">{http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,3,-2,1,-3,2/goTop.html,
http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,5,-3:4,-1,2,-5:6,-4,3,\
http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,5,-3:4,-1,2,-5:6,-4,3,-2/goTop.html}</pre>
-2/goTop.html}</pre>
|}
|}
<!--END-->
<!--END-->

Revision as of 21:31, 23 August 2005

Out[3]
 -5   5    10             3    5
q   + -- + -- + 10 q + 5 q  + q
       3   q
      q

The Gauss Code of an -crossing knot or link is obtained as follows:

  • Number the crossings of from 1 to in an arbitrary manner.
  • Order the components of is some arbitrary manner.
  • Start "walking" along the first component of , taking note of the numbers of the crossings you've gone through. If in a given crossing crossing you cross on the "over" strand, write down the number of that crossing. If you cross on the "under" strand, write down the negative of the number of that crossing.
  • Do the same for all other components of (if any).

The resulting list of signed integers (in the case of a knot) or list of lists of signed integers (in the case of a link) is called the Gauss Code of . KnotTheory` has some rudimentary support for Gauss codes:

(For In[1] see Setup)

In[2]:= ?GaussCode

GaussCode[i1, i2, ...] represents a knot via its Gauss Code following the conventions used by the knotilus website, http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html. Likewise GaussCode[l1, l2, ...] represents a link, where each of l1, l2,... is a list describing the code read along one component of the link. GaussCode also acts as a "type caster", so for example, GaussCode[K] where K is is a named knot (or link) returns the Gauss code of that knot.

Thus for example, the Gauss codes for the trefoil knot and the Borromean link are:

In[3]:= GaussCode /@ {Knot[3, 1], Link[6, Alternating, 4]}
Out[3]=
{GaussCode[-1, 3, -2, 1, -3, 2], GaussCode[{1, -6, 5, -3}, {4, -1, 2, -5}, {6, -4, 3, -2}]}

Ralph Furmaniak, working under the guidance of Stuart Rankin and Ortho Flint at the University of Western Ontario, wrote a web-based server called "Knotilus" that takes Gauss codes and outputs pictures of the desired knots and links in several standard image formats.

In[4]:= ?KnotilusURL

KnotilusURL[K_] returns the URL of the knot/link K on the knotilus website,

http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html.

Thus,

In[5]:= KnotilusURL /@ {Knot[3, 1], Link[6, Alternating, 4]}
Out[5]=
{http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,3,-2,1,-3,2/goTop.html, 
 
  http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,5,-3:4,-1,2,-5:6,-4,3,-2/goTop.html}