T(5,4): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 5: | Line 5: | ||
<span id="top"></span> |
<span id="top"></span> |
||
{{TorusKnotsNavigation|T(7,3)|T(15,2)}} |
{{TorusKnotsNavigation|"T(7,3)"|"T(15,2)"}} |
||
{{:Further T(5,4) views}} |
{{:Further "T(5,4)" views}} |
||
[[Planar Diagrams|Planar Diagram]]: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] |
[[Planar Diagrams|Planar Diagram]]: PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], X[11, 19, 12, 18], |
||
⚫ | |||
X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], |
|||
⚫ | |||
⚫ | |||
⚫ | |||
<table border=0><tr align=center> |
<table border=0><tr align=center> |
||
Line 23: | Line 20: | ||
</td> |
</td> |
||
<td> |
<td> |
||
<h1> The m |
<h1> The m*(-1 + n)-Crossing Torus Knot T(m,n)</h1> |
||
Include[$knotaka.html] |
Include["$knotaka.html"] |
||
<p>Visit <a class=external |
<p>Visit <a class=external |
||
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s |
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s |
||
Line 43: | Line 40: | ||
<td> </td> |
<td> </td> |
||
<td> |
<td> |
||
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> HTML] |
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> "HTML"] |
||
</td> |
</td> |
||
</tr></table> |
</tr></table> |
||
Line 62: | Line 59: | ||
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
||
</td> |
</td> |
||
<td><em>{ToString[Knot[0, 1], FormatType -> HTMLForm] |
<td><em>{StringJoin[ToString[Knot[0, 1], FormatType -> HTMLForm], ", ", |
||
⚫ | |||
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm], ", "]...}</em></td> |
|||
⚫ | |||
</tr></table> |
</tr></table> |
||
Line 79: | Line 74: | ||
<td><a href="../Manual/Jones.html">Jones Polynomial</a>: |
<td><a href="../Manual/Jones.html">Jones Polynomial</a>: |
||
</td> |
</td> |
||
<td><em> |
<td><em>PolyPrint[-((Sqrt[q]*TorusKnot[m, n])/(1 + q)), q]</em></td> |
||
PolyPrint[-(-----------------------), q] |
|||
1 + q</em></td> |
|||
</tr></table> |
</tr></table> |
||
Line 88: | Line 81: | ||
href="../Manual/Jones.html">Jones Polynomial</a>: |
href="../Manual/Jones.html">Jones Polynomial</a>: |
||
</td> |
</td> |
||
<td><em>{...}</em></td> |
<td><em>{""...}</em></td> |
||
</tr></table> |
</tr></table> |
||
Include[ColouredJones.mhtml] |
Include["ColouredJones.mhtml"] |
||
<p><table><tr align=left valign=top> |
<p><table><tr align=left valign=top> |
||
Line 102: | Line 95: | ||
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: |
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: |
||
</td> |
</td> |
||
<td><em>PolyPrint[KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][1/4]/ |
|||
<td><em></em></td> |
|||
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) + |
|||
KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][ |
|||
Flatten[KnotTheory`Kauffman`Decorate /@ #1] & ]/ |
|||
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) + |
|||
KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][ |
|||
{KnotTheory`Kauffman`State[PD[TorusKnot[m, n]]]}]/ |
|||
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]), {9, z}]</em></td> |
|||
</tr></table> |
</tr></table> |
||
Line 126: | Line 126: | ||
ComputerTalkHeader |
ComputerTalkHeader |
||
GraphicsBox[`1`.`2`_240.jpg, TubePlot[TorusKnot[`1`, `2`]], m, n] |
GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n] |
||
InOut[Crossings[``], TorusKnot[m, n]] |
InOut["Crossings[``]", TorusKnot[m, n]] |
||
InOut[PD[``], TorusKnot[m, n]] |
InOut["PD[``]", TorusKnot[m, n]] |
||
InOut[GaussCode[``], TorusKnot[m, n]] |
InOut["GaussCode[``]", TorusKnot[m, n]] |
||
InOut[BR[``], TorusKnot[m, n]] |
InOut["BR[``]", TorusKnot[m, n]] |
||
InOut[alex = Alexander[``][t], TorusKnot[m, n]] |
InOut["alex = Alexander[``][t]", TorusKnot[m, n]] |
||
InOut[Conway[``][z], TorusKnot[m, n]] |
InOut["Conway[``][z]", TorusKnot[m, n]] |
||
InOut[Select[AllKnots[], (alex === Alexander[#][t])&]] |
InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"] |
||
InOut[{KnotDet[`1`], KnotSignature[`1`]}, TorusKnot[m, n]] |
InOut["{KnotDet[`1`], KnotSignature[`1`]}", TorusKnot[m, n]] |
||
InOut[J=Jones[``][q], TorusKnot[m, n]] |
InOut["J=Jones[``][q]", TorusKnot[m, n]] |
||
InOut[ |
|||
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"] |
|||
⚫ | |||
Jones[#][q])&]] |
|||
⚫ | |||
⚫ | |||
InOut[ |
InOut["Kauffman[``][a, z]", TorusKnot[m, n]] |
||
InOut[ |
InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", TorusKnot[m, n]] |
||
InOut[ |
InOut["Kh[``][q, t]", TorusKnot[m, n]] |
||
⚫ | |||
</table> |
</table> |
||
Line 172: | Line 171: | ||
</body> |
</body> |
||
</html><!-- Script generated - do not edit! --> |
|||
</html> |
|||
<!-- TorusKnot[5, 4] --> |
|||
<span id="top"></span> |
|||
{{TorusKnotsNavigation|"T(7,3)"|"T(15,2)"}} |
|||
{| style="width: 20%; float: right;" | |
|||
| |
|||
<center> |
|||
[[Image:"T(7,3)".gif|60px]] |
|||
[["T(7,3)"]] |
|||
</center> |
|||
| |
|||
<center> |
|||
[[Image:"T(15,2)".gif|60px]] |
|||
[["T(15,2)"]] |
|||
</center> |
|||
|} |
|||
{{Knot Site Links|n=7|k=5}} |
|||
{{Knot Presentations|name=7_5}} |
|||
===[[Three Dimensional Invariants|Three dimensional invariants]]=== |
|||
{| |
|||
| Symmetry type |
|||
| {{Data:7_5/Symmetry Type}} |
|||
|- |
|||
| Unknotting number |
|||
| {{Data:7_5/Unknotting Number}} |
|||
|- |
|||
| 3-genus |
|||
| {{Data:7_5/3-Genus}} |
|||
|- |
|||
| Bridge index (super bridge index) |
|||
| {{Data:7_5/Bridge Index}} ({{Data:7_5/Super Bridge Index}}) |
|||
|- |
|||
| Nakanishi index |
|||
| {{Data:7_5/Nakanishi Index}} |
|||
|} |
|||
{{Polynomial Invariants|name=7_5}} |
|||
{{Vassiliev Invariants|name=7_5}} |
|||
{{Khovanov Invariants|name=7_5}} |
|||
{{Quantum Invariants|name=7_5}} |
Revision as of 20:04, 25 August 2005
Previous: "T(7,3)"; Next: "T(15,2)"
Planar Diagram: PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], X[11, 19, 12, 18],
X[4, 20, 5, 19], X[27, 21, 28, 20], X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30], X[16, 2, 17, 1], X[9, 3, 10, 2]]
<a href="../Manual/TubePlot.html"><img src="m.n_240.jpg" border=0 alt="T(m,n)"> |
The m*(-1 + n)-Crossing Torus Knot T(m,n)Include["$knotaka.html"] Visit <a class=external href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s page</a> at <a class=external href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno tilus</a>! <a href="../Manual/Acknowledgement.html">Acknowledgement</a> |
<a href="../Manual/GaussCode.html">Gauss Code</a>: | {PD[TorusKnot[m, n]]} |
<a href="../Manual/BR.html">Braid Representative</a>: |
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> "HTML"] |
<a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: | PolyPrint[1, t] |
<a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: | PolyPrint[1, z] |
Other knots with the same <a
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
{StringJoin[ToString[Knot[0, 1], FormatType -> HTMLForm], ", ",
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm], ", ",ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm], ", "]...} |
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>: |
{1, 0} |
<a href="../Manual/Jones.html">Jones Polynomial</a>: | PolyPrint[-((Sqrt[q]*TorusKnot[m, n])/(1 + q)), q] |
Other knots (up to mirrors) with the same <a
href="../Manual/Jones.html">Jones Polynomial</a>: |
{""...} |
Include["ColouredJones.mhtml"]
<a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: | PolyPrint[TorusKnot[m, n], q] |
<a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: | PolyPrint[KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][1/4]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) + KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][ Flatten[KnotTheory`Kauffman`Decorate /@ #1] & ]/ ((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) + KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][ {KnotTheory`Kauffman`State[PD[TorusKnot[m, n]]]}]/((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]), {9, z}] |
<a href="../Manual/Vassiliev.html">V2 and V3, the type 2 and 3 Vassiliev invariants</a>: | {0, 0} |
<a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=0 is the signature of
T(m,n). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
TabularKh[$Failed[q, t], {1, -1}]
ComputerTalkHeader
GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n] InOut["Crossings[``]", TorusKnot[m, n]] InOut["PD[``]", TorusKnot[m, n]] InOut["GaussCode[``]", TorusKnot[m, n]] InOut["BR[``]", TorusKnot[m, n]] InOut["alex = Alexander[``][t]", TorusKnot[m, n]] InOut["Conway[``][z]", TorusKnot[m, n]] InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"] InOut["{KnotDet[`1`], KnotSignature[`1`]}", TorusKnot[m, n]] InOut["J=Jones[``][q]", TorusKnot[m, n]] InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"]
Include["ColouredJonesM.mhtml"] InOut["A2Invariant[``][q]", TorusKnot[m, n]] InOut["Kauffman[``][a, z]", TorusKnot[m, n]] InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", TorusKnot[m, n]] InOut["Kh[``][q, t]", TorusKnot[m, n]]
<a href="/~drorbn/">Dror Bar-Natan</a>: <a href="../index.html">The Knot Atlas</a>: <a href="index.html">Torus Knots</a>: <a href="#top">The Torus Knot T(m,n)</a> |
|
</body> </html>
Previous: "T(7,3)"; Next: "T(15,2)"
|
|
Visit T(5,4)'s page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit [{{{KnotilusURL}}} T(5,4)'s page] at Knotilus!
Visit T(5,4)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2 |
Gauss code | 14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13 |
Dowker-Thistlethwaite code | 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6 |
Conway Notation | Data:T(5,4)/Conway Notation |
Three dimensional invariants
Symmetry type | Reversible |
Unknotting number | 2 |
3-genus | 2 |
Bridge index (super bridge index) | 2 (4) |
Nakanishi index | 1 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(5,4)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 8 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (15, 50) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.