T(5,4): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 5: Line 5:
<span id="top"></span>
<span id="top"></span>


{{TorusKnotsNavigation|T(7,3)|T(15,2)}}
{{TorusKnotsNavigation|"T(7,3)"|"T(15,2)"}}


{{:Further T(5,4) views}}
{{:Further "T(5,4)" views}}


[[Planar Diagrams|Planar Diagram]]: X[17, 25, 18, 24] X[10, 26, 11, 25] X[3, 27, 4, 26] X[11, 19, 12, 18] X[4,\
[[Planar Diagrams|Planar Diagram]]: PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], X[11, 19, 12, 18],
X[4, 20, 5, 19], X[27, 21, 28, 20], X[5, 13, 6, 12], X[28, 14, 29, 13],
20, 5, 19] X[27, 21, 28, 20] X[5, 13, 6, 12] X[28, 14, 29, 13] X[21, 15,\
X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8],
X[23, 1, 24, 30], X[16, 2, 17, 1], X[9, 3, 10, 2]]
22, 14] X[29, 7, 30, 6] X[22, 8, 23, 7] X[15, 9, 16, 8] X[23, 1, 24, 30]\
X[16, 2, 17, 1] X[9, 3, 10, 2]


<table border=0><tr align=center>
<table border=0><tr align=center>
Line 23: Line 20:
</td>
</td>
<td>
<td>
<h1>&nbsp;&nbsp; The m (-1 + n)-Crossing Torus Knot T(m,n)</h1>
<h1>&nbsp;&nbsp; The m*(-1 + n)-Crossing Torus Knot T(m,n)</h1>
Include[$knotaka.html]
Include["$knotaka.html"]
<p>Visit <a class=external
<p>Visit <a class=external
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s
Line 43: Line 40:
<td>&nbsp;&nbsp;&nbsp;</td>
<td>&nbsp;&nbsp;&nbsp;</td>
<td>
<td>
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> HTML]
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> "HTML"]
</td>
</td>
</tr></table>
</tr></table>
Line 62: Line 59:
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>:
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>:
</td>
</td>
<td><em>{ToString[Knot[0, 1], FormatType -> HTMLForm]<>, <>
<td><em>{StringJoin[ToString[Knot[0, 1], FormatType -> HTMLForm], ", ",
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm], ", ",
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm]<>, <>
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm], ", "]...}</em></td>
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm]<>, ...}</em></td>
</tr></table>
</tr></table>


Line 79: Line 74:
<td><a href="../Manual/Jones.html">Jones Polynomial</a>:
<td><a href="../Manual/Jones.html">Jones Polynomial</a>:
</td>
</td>
<td><em> Sqrt[q] TorusKnot[m, n]
<td><em>PolyPrint[-((Sqrt[q]*TorusKnot[m, n])/(1 + q)), q]</em></td>
PolyPrint[-(-----------------------), q]
1 + q</em></td>
</tr></table>
</tr></table>


Line 88: Line 81:
href="../Manual/Jones.html">Jones Polynomial</a>:
href="../Manual/Jones.html">Jones Polynomial</a>:
</td>
</td>
<td><em>{...}</em></td>
<td><em>{""...}</em></td>
</tr></table>
</tr></table>


Include[ColouredJones.mhtml]
Include["ColouredJones.mhtml"]


<p><table><tr align=left valign=top>
<p><table><tr align=left valign=top>
Line 102: Line 95:
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>:
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>:
</td>
</td>
<td><em>PolyPrint[KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][1/4]/
<td><em></em></td>
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) +
KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][
Flatten[KnotTheory`Kauffman`Decorate /@ #1] & ]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) +
KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][
{KnotTheory`Kauffman`State[PD[TorusKnot[m, n]]]}]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]), {9, z}]</em></td>
</tr></table>
</tr></table>


Line 126: Line 126:
ComputerTalkHeader
ComputerTalkHeader


GraphicsBox[`1`.`2`_240.jpg, TubePlot[TorusKnot[`1`, `2`]], m, n]
GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n]
InOut[Crossings[``], TorusKnot[m, n]]
InOut["Crossings[``]", TorusKnot[m, n]]
InOut[PD[``], TorusKnot[m, n]]
InOut["PD[``]", TorusKnot[m, n]]
InOut[GaussCode[``], TorusKnot[m, n]]
InOut["GaussCode[``]", TorusKnot[m, n]]
InOut[BR[``], TorusKnot[m, n]]
InOut["BR[``]", TorusKnot[m, n]]
InOut[alex = Alexander[``][t], TorusKnot[m, n]]
InOut["alex = Alexander[``][t]", TorusKnot[m, n]]
InOut[Conway[``][z], TorusKnot[m, n]]
InOut["Conway[``][z]", TorusKnot[m, n]]
InOut[Select[AllKnots[], (alex === Alexander[#][t])&]]
InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]
InOut[{KnotDet[`1`], KnotSignature[`1`]}, TorusKnot[m, n]]
InOut["{KnotDet[`1`], KnotSignature[`1`]}", TorusKnot[m, n]]
InOut[J=Jones[``][q], TorusKnot[m, n]]
InOut["J=Jones[``][q]", TorusKnot[m, n]]
InOut[
InOut[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) ===\
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"]
Include["ColouredJonesM.mhtml"]
Jones[#][q])&]]
InOut["A2Invariant[``][q]", TorusKnot[m, n]]
Include[ColouredJonesM.mhtml]
InOut[A2Invariant[``][q], TorusKnot[m, n]]
InOut["Kauffman[``][a, z]", TorusKnot[m, n]]
InOut[Kauffman[``][a, z], TorusKnot[m, n]]
InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", TorusKnot[m, n]]
InOut[{Vassiliev[2][`1`], Vassiliev[3][`1`]}, TorusKnot[m, n]]
InOut["Kh[``][q, t]", TorusKnot[m, n]]
InOut[Kh[``][q, t], TorusKnot[m, n]]


</table>
</table>
Line 172: Line 171:


</body>
</body>
</html><!-- Script generated - do not edit! -->
</html>

<!-- TorusKnot[5, 4] -->

<span id="top"></span>

{{TorusKnotsNavigation|"T(7,3)"|"T(15,2)"}}

{| style="width: 20%; float: right;" |
|
<center>
[[Image:"T(7,3)".gif|60px]]

[["T(7,3)"]]
</center>
|
<center>
[[Image:"T(15,2)".gif|60px]]

[["T(15,2)"]]
</center>
|}

{{Knot Site Links|n=7|k=5}}

{{Knot Presentations|name=7_5}}
===[[Three Dimensional Invariants|Three dimensional invariants]]===
{|
| Symmetry type
| {{Data:7_5/Symmetry Type}}
|-
| Unknotting number
| {{Data:7_5/Unknotting Number}}
|-
| 3-genus
| {{Data:7_5/3-Genus}}
|-
| Bridge index (super bridge index)
| {{Data:7_5/Bridge Index}} ({{Data:7_5/Super Bridge Index}})
|-
| Nakanishi index
| {{Data:7_5/Nakanishi Index}}
|}
{{Polynomial Invariants|name=7_5}}
{{Vassiliev Invariants|name=7_5}}
{{Khovanov Invariants|name=7_5}}
{{Quantum Invariants|name=7_5}}

Revision as of 20:04, 25 August 2005


Previous: "T(7,3)"; Next: "T(15,2)"

Further "T(5,4)" views

Planar Diagram: PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], X[11, 19, 12, 18],

X[4, 20, 5, 19], X[27, 21, 28, 20], X[5, 13, 6, 12], X[28, 14, 29, 13], 
X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], 
X[23, 1, 24, 30], X[16, 2, 17, 1], X[9, 3, 10, 2]]
   <a href="../Manual/TubePlot.html"><img src="m.n_240.jpg"
   border=0 alt="T(m,n)">
TubePlot</a>

   The m*(-1 + n)-Crossing Torus Knot T(m,n)

   Include["$knotaka.html"]

Visit <a class=external href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s page</a> at <a class=external href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno tilus</a>!

<a href="../Manual/Acknowledgement.html">Acknowledgement</a>

<a href="../Manual/GaussCode.html">Gauss Code</a>: {PD[TorusKnot[m, n]]}

<a href="../Manual/BR.html">Braid Representative</a>:    
   BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> "HTML"]

<a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: PolyPrint[1, t]

<a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: PolyPrint[1, z]

Other knots with the same <a
   href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>:
{StringJoin[ToString[Knot[0, 1], FormatType -> HTMLForm], ", ",
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm], ", ", 
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm], ", "]...}

   <a href="../Manual/DetAndSignature.html">Determinant and Signature</a>:
{1, 0}

<a href="../Manual/Jones.html">Jones Polynomial</a>: PolyPrint[-((Sqrt[q]*TorusKnot[m, n])/(1 + q)), q]

Other knots (up to mirrors) with the same <a
   href="../Manual/Jones.html">Jones Polynomial</a>:
{""...}

Include["ColouredJones.mhtml"]

<a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: PolyPrint[TorusKnot[m, n], q]

<a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: PolyPrint[KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][1/4]/
  ((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) + 
 KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][
   Flatten[KnotTheory`Kauffman`Decorate /@ #1] & ]/
  ((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) + 
 KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][
   {KnotTheory`Kauffman`State[PD[TorusKnot[m, n]]]}]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]), {9, z}]

<a href="../Manual/Vassiliev.html">V2 and V3, the type 2 and 3 Vassiliev invariants</a>: {0, 0}

<a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of T(m,n). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

 TabularKh[$Failed[q, t], {1, -1}]

ComputerTalkHeader

GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n] InOut["Crossings[``]", TorusKnot[m, n]] InOut["PD[``]", TorusKnot[m, n]] InOut["GaussCode[``]", TorusKnot[m, n]] InOut["BR[``]", TorusKnot[m, n]] InOut["alex = Alexander[``][t]", TorusKnot[m, n]] InOut["Conway[``][z]", TorusKnot[m, n]] InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"] InOut["{KnotDet[`1`], KnotSignature[`1`]}", TorusKnot[m, n]] InOut["J=Jones[``][q]", TorusKnot[m, n]] InOut[

"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"]

Include["ColouredJonesM.mhtml"] InOut["A2Invariant[``][q]", TorusKnot[m, n]] InOut["Kauffman[``][a, z]", TorusKnot[m, n]] InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", TorusKnot[m, n]] InOut["Kh[``][q, t]", TorusKnot[m, n]]


   <a href="/~drorbn/">Dror Bar-Natan</a>:
   <a href="../index.html">The Knot Atlas</a>:
   <a href="index.html">Torus Knots</a>:
   <a href="#top">The Torus Knot T(m,n)</a>
       <a href="prevm.prevn.html"><img border=0
       width=120 height=120 src="prevm.prevn_120.jpg"
       alt="T(prevm,prevn)">
T(prevm,prevn)</a>
       <a href="nextm.nextn.html"><img border=0
       width=120 height=120 src="nextm.nextn_120.jpg"
       alt="T(nextm,nextn)">
T(nextm,nextn)</a>

</body> </html>


Previous: "T(7,3)"; Next: "T(15,2)"

File:"T(7,3)".gif

"T(7,3)"

File:"T(15,2)".gif

"T(15,2)"

Visit T(5,4)'s page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit [{{{KnotilusURL}}} T(5,4)'s page] at Knotilus!

Visit T(5,4)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2
Gauss code 14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13
Dowker-Thistlethwaite code 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6
Conway Notation Data:T(5,4)/Conway Notation

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index (super bridge index) 2 (4)
Nakanishi index 1

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,4)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,4)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (15, 50)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(5,4)/V 2,1 Data:T(5,4)/V 3,1 Data:T(5,4)/V 4,1 Data:T(5,4)/V 4,2 Data:T(5,4)/V 4,3 Data:T(5,4)/V 5,1 Data:T(5,4)/V 5,2 Data:T(5,4)/V 5,3 Data:T(5,4)/V 5,4 Data:T(5,4)/V 6,1 Data:T(5,4)/V 6,2 Data:T(5,4)/V 6,3 Data:T(5,4)/V 6,4 Data:T(5,4)/V 6,5 Data:T(5,4)/V 6,6 Data:T(5,4)/V 6,7 Data:T(5,4)/V 6,8 Data:T(5,4)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Template:Khovanov Invariants Template:Quantum Invariants