3 1 Further Notes and Views: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
(→Non-prime (compound) versions: new picture) |
||
(44 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
The trefoil is perhaps the easiest knot to find in "nature": |
The [[3_1|trefoil]] is perhaps the easiest knot to find in "nature", and is topologically equivalent to the interlaced form of the common Christian and pagan "triquetra" symbol [http://en.wikipedia.org/wiki/Triquetra]: |
||
{| style="background: transparent;" |
{| style="background: transparent;" |
||
|- valign=top |
|||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = CaixaGeral_160.jpg | |
||
text = Logo of Caixa Geral de Depositos, Lisboa [http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/KnotsInLisboa.html]| |
|||
text = Mike Hutchings' Rope Trick | |
|||
}} |
}} |
||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = hart-knot-C.jpg| |
||
text = A knot consists of two harts in Kolam |
|||
link = http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/TrefoilFigureEight/index.html | |
|||
[http://intervision.aadau.net/]| |
|||
text = Thurston's Trefoil - Figure Eight Trick | |
|||
}} |
}} |
||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = Triquetra-Vesica-solid.png | |
||
text = A basic form of the interlaced Triquetra; as a Christian symbol, it refers to the Trinity| |
|||
link = http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/KenyanStone.html | |
|||
text = A Kenyan Stone | |
|||
}} |
}} |
||
{{Knot View Template| |
|||
|- |
|||
image = Blue Trefoil Knot.png | |
|||
text = 3D depiction | |
|||
}} |
|||
|} |
|||
<div class="NavFrame"><div class="NavHead">Further images...</div> |
|||
<div class="NavContent"> |
|||
{| style="background: transparent;" |
|||
|- valign=top |
|||
{{Knot View Template| |
|||
image = Trefoil-triquetra-circular-arcs-around-triangle.png | |
|||
text = Trefoil/triquetra without outside corners (made from straight lines and 240° circular arcs)| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Triquetra-Vesica.png | |
|||
text = Triquetra made from circular arc ribbons| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Triquetra-tightly-knotted.png | |
|||
text = Tightly-knotted form| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Vodicka triquetra.png | |
|||
text = Celtic-style| |
|||
}} |
|||
|- valign=top |
|||
{{Knot View Template| |
{{Knot View Template| |
||
image = KnottedBox_160.jpg | |
image = KnottedBox_160.jpg | |
||
text = A Knotted Box [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/KnottedBox.html]| |
|||
text = A Knotted Box | |
|||
}} |
}} |
||
{{Knot View Template| |
{{Knot View Template| |
||
image = HollanderYork_160.jpg | |
image = HollanderYork_160.jpg | |
||
text = A trefoil near the Hollander York Gallery [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/HollanderYork.html]| |
|||
text = A trefoil near the Hollander York Gallery | |
|||
}} |
}} |
||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = Three-circles-Trefoil.png | |
||
text = Trefoil of three intersecting circles| |
|||
link = http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/KnottedPencil.html | |
|||
}} |
|||
text = A Knotted Pencil | |
|||
{{Knot View Template| |
|||
image = Trefoil-non-3-symm.png | |
|||
text = Trefoil depicted in non-threefold form |
|||
}} |
|||
|- valign=top |
|||
{{Knot View Template| |
|||
image = One-Twist Trefoil.png | |
|||
text = 3D depiction in non-threefold form |
|||
}} |
|||
{{Knot View Template| |
|||
image = hagfish-knotting.gif | |
|||
text = A hagfish tying itself in a knot to escape capture. [http://oceanlink.island.net/oinfo/hagfish/hagfish.html]| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Valknut-Symbol-triquetra.png | |
|||
text = One version of the Germanic "Valknut" symbol| |
|||
}} |
|||
{{Knot View Template| |
|||
image = KenyanStone_160.jpg | |
|||
text = A Kenyan Stone [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/KenyanStone.html]| |
|||
}} |
|||
|- valign=top |
|||
{{Knot View Template| |
|||
image = Trefoil-square.png | |
|||
text = Square depiction| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Trefoil-Triquetra.png | |
|||
text = In the form of an architectural trefoil| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Trefoil-triquetra-rhodonea-rose-limacon.png | |
|||
text = Polar equation curve.| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Valknut-Symbol-triquetra-alternate.png | |
|||
text = Alternate Valknut depiction |
|||
}} |
|||
|- valign=top |
|||
{{Knot View Template| |
|||
image = Overhand-loop.png | |
|||
text = Simple overhand knot of practical knot-tying| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Overhand-folded-ribbon-pentagram.png | |
|||
text = Tightly folded pentagonal overhand knot| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Trefoil-square-centerline.png | |
|||
text = Visually fancier square trefoil| |
|||
}} |
|||
{{Knot View Template| |
|||
image = Impossible trefoil knot Isometric.png | |
|||
text = Trefoil knot as impossible object| |
|||
}} |
|||
|- valign=top |
|||
{{Knot View Template| |
|||
image = TriquetraCaixaGeral.png | |
|||
text = Logo of the Caixa Geral de Depósitos with white background| |
|||
}} |
}} |
||
|- |
|||
{{Knot View Template| |
{{Knot View Template| |
||
image = Auryn_120.gif | |
image = Auryn_120.gif | |
||
text = The NeverEnding Story logo is a connected sum of two trefoils. [http://www.thealmightyguru.com/Reviews/NeverendingStory/NeverendingStory.html]| |
|||
text = The NeverEnding Story is a connected sum of two trefoils. | |
|||
}} |
}} |
||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = RopeTrick_160.jpg | |
||
text = Mike Hutchings' Rope Trick [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/RopeTrick/index.html]| |
|||
text = Logo of Caixa Geral de Depositos, Lisboa | |
|||
}} |
}} |
||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = DylansTrefoil_120.jpg | |
||
text = Thurston's Trefoil - Figure Eight Trick [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/TrefoilFigureEight/index.html]| |
|||
text = Banco Do Brasil | |
|||
}} |
}} |
||
|- valign=top |
|||
|- |
|||
{{Knot View Template| |
{{Knot View Template| |
||
image = |
image = KnottedPencil_160.jpg | |
||
text = A Knotted Pencil [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/KnottedPencil.html]| |
|||
link = http://oceanlink.island.net/oinfo/hagfish/hagfish.html | |
|||
}} |
|||
text = A hagfish tying itself in a knot to escape capture. | |
|||
{{Knot View Template| |
|||
image = BancoDoBrasil_160.jpg | |
|||
text = Banco Do Brasil [http://www.math.toronto.edu/~drorbn/Gallery/KnottedObjects/BancoDoBrasil.html]| |
|||
}} |
}} |
||
|} |
|} |
||
===Non-prime (compound) versions=== |
|||
<gallery> |
|||
Image:Granny-knot-6-crossings.png|Two trefoils (single-closed-loop version of the "granny knot" of practical knot-tying). |
|||
Image:Square-knot-6-crossings.png|Two trefoils (single-closed-loop version of the "square knot" of practical knot-tying) |
|||
Image:Blue Square Knot.png|3D square knot |
|||
Image:3trefoil-9crossings.gif|Three trefoils (symmetrical). |
|||
Image:Celtic-knot-insquare-green-transparentbg.png|Four trefoils (Celtic or pseudo-Celtic decorative knot which fits in square) |
|||
Image:Trefoil-of-trefoils.png|Three trefoils along a closed loop which itself is knotted as a trefoil. |
|||
Image : multan.jpg|Sum of four trefoils, Multan, Pakistan |
|||
</gallery> |
|||
For configurations of two trefoils along a closed loop which are prime, see [[8_15]] and [[10_120]]. For a configuration of three trefoils along a closed loop which is prime, see [[K13a248]]. For a prime link consisting of two joined trefoils, see [[L10a108]]. |
|||
</div></div> |
|||
<br clear=left> |
Latest revision as of 04:59, 4 June 2018
The trefoil is perhaps the easiest knot to find in "nature", and is topologically equivalent to the interlaced form of the common Christian and pagan "triquetra" symbol [12]:
Further images...