L10a108
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
Two interlinked trefoil knots (3_1). |
Link Presentations
[edit Notes on L10a108's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X16,7,17,8 X10,5,1,6 X6374 X4,9,5,10 X20,17,11,18 X18,13,19,14 X14,19,15,20 X2,11,3,12 X8,15,9,16 |
| Gauss code | {1, -9, 4, -5, 3, -4, 2, -10, 5, -3}, {9, -1, 7, -8, 10, -2, 6, -7, 8, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2 t(2)^2 t(1)^3+2 t(2) t(1)^3-t(1)^3-2 t(2)^3 t(1)^2+6 t(2)^2 t(1)^2-6 t(2) t(1)^2+2 t(1)^2+2 t(2)^3 t(1)-6 t(2)^2 t(1)+6 t(2) t(1)-2 t(1)-t(2)^3+2 t(2)^2-2 t(2)}{t(1)^{3/2} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{8}{q^{9/2}}+\frac{10}{q^{11/2}}-\frac{14}{q^{13/2}}+\frac{14}{q^{15/2}}-\frac{13}{q^{17/2}}+\frac{11}{q^{19/2}}-\frac{6}{q^{21/2}}+\frac{3}{q^{23/2}}-\frac{1}{q^{25/2}}} (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{13} z^{-1} -4 z a^{11}-5 a^{11} z^{-1} +6 z^3 a^9+14 z a^9+8 a^9 z^{-1} -3 z^5 a^7-10 z^3 a^7-11 z a^7-4 a^7 z^{-1} -z^5 a^5-2 z^3 a^5-z a^5} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^{15}+2 z^3 a^{15}-z a^{15}-3 z^6 a^{14}+6 z^4 a^{14}-5 z^2 a^{14}+2 a^{14}-4 z^7 a^{13}+4 z^5 a^{13}+z^3 a^{13}-z a^{13}-a^{13} z^{-1} -3 z^8 a^{12}-5 z^6 a^{12}+21 z^4 a^{12}-22 z^2 a^{12}+9 a^{12}-z^9 a^{11}-11 z^7 a^{11}+23 z^5 a^{11}-16 z^3 a^{11}+9 z a^{11}-5 a^{11} z^{-1} -7 z^8 a^{10}-z^6 a^{10}+29 z^4 a^{10}-35 z^2 a^{10}+14 a^{10}-z^9 a^9-13 z^7 a^9+32 z^5 a^9-32 z^3 a^9+22 z a^9-8 a^9 z^{-1} -4 z^8 a^8-2 z^6 a^8+18 z^4 a^8-19 z^2 a^8+8 a^8-6 z^7 a^7+13 z^5 a^7-15 z^3 a^7+12 z a^7-4 a^7 z^{-1} -3 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+2 z^3 a^5-z a^5} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|






