Threading a link by a polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Tag: Manual revert
Line 12: Line 12:
$$-->
$$-->
<!--END-->
<!--END-->
<!--$$Expand[cableLink[hopfLink,
<!--$$Expand[CableLink[hopfLink,
R[Subscript[z, 1], 1]*cheb[2, Subscript[z, 2]], {1, 3}, {Subscript[
R[Subscript[z, 1], 1]*cheb[2, Subscript[z, 2]], {1, 3}, {Subscript[
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}] //
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}] //
Line 18: Line 18:
$$-->
$$-->
<!--END-->
<!--END-->
<!--$$Expand[cableLink[hopfLink,
<!--$$Expand[CableLink[hopfLink,
R[Subscript[z, 1], 2]*cheb[4, Subscript[z, 2]], {1, 3}, {Subscript[
R[Subscript[z, 1], 2]*cheb[4, Subscript[z, 2]], {1, 3}, {Subscript[
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}]
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}]

Revision as of 17:29, 5 August 2025

CableLink[link,poly,strandList,vars], whose code is available here, computes the Kauffman bracket of link (given as a PD) with components L1,L2,...,Ln, cabled by the polynomial poly in the variables z1,z2,...,zn. strandList is a list of strand labels of length n, where the ith element is the first strand label corresponding to component Li. As an example, we can verify some formulas from Mausbaum: