Threading a link by a polynomial

From Knot Atlas
Jump to navigationJump to search

CableLink[link,poly,strandList,vars], whose code is available here, computes the Kauffman bracket of link (given as a PD) with components L1,L2,...,Ln, cabled by the polynomial poly in the variables z1,z2,...,zn. strandList is a list of strand labels of length n, where the ith element is the first strand label corresponding to component Li. As an example, we can verify some formulas from [Masbaum], after importing KnotTheory` and the CableLink code:

In[3]:= hopfLink=PD[X[3,1,4,2],X[2,4,1,3]]; bracket[n_]:=a^n-a^(-n); bracketFact[n_]:=Product[bracket[i],{i,1,n}]; lambda[n_] := A^(2*n + 2) + A^(-2*n - 2); R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}]; cheb[0, z_] = 1; cheb[1, z_] = z; cheb[n_, z_] := cheb[n, z] = z*cheb[n - 1, z] - cheb[n - 2, z];
In[4]:= Expand[CableLink[hopfLink, R[Subscript[z, 1], 1]*cheb[2, Subscript[z, 2]], {1, 3}, {Subscript[ z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}] Expand[(-1)^1*bracketFact[3]/bracket[1]]
Out[4]= -1/a^5 + 1/a + a - a^5 -1/a^5 + 1/a + a - a^5
In[5]:= Expand[CableLink[hopfLink, R[Subscript[z, 1], 2]*cheb[4, Subscript[z, 2]], {1, 3}, {Subscript[ z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}] Expand[(-1)^2*bracketFact[5]/bracket[1]]
Out[5]= 2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14 2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14

[Masbaum] ^  Masbaum, Gregor. Skein-theoretical derivations of some formulas of Habiro. Alg. and Geo. Topology 3 (2003): 537–556. https://doi.org/10.2140/agt.2003.3.537