Threading a link by a polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
Tag: Manual revert
No edit summary
Tag: Manual revert
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<code>CableLink[link,poly,strandList,vars]</code>, whose code is available [[cableLink.m|here]], computes the Kauffman bracket of link (given as a PD) with components L1,L2,...,Ln, cabled by the polynomial poly in the variables z1,z2,...,zn. strandList is a list of strand labels of length n, where the ith element is the first strand label corresponding to component Li.
<code>CableLink[link,poly,strandList,vars]</code>, whose code is available [[cableLink.m|here]], computes the Kauffman bracket of link (given as a PD) with components L1,L2,...,Ln, cabled by the polynomial poly in the variables z1,z2,...,zn. strandList is a list of strand labels of length n, where the ith element is the first strand label corresponding to component Li.
As an example, we can verify some formulas from Mausbaum, after importing KnotTheory` and the CableLink code:
As an example, we can verify some formulas from {{ref|Masbaum}}, after importing KnotTheory` and the CableLink code:


<!--$$hopfLink=PD[X[3,1,4,2],X[2,4,1,3]]; //
<!--$$hopfLink=PD[X[3,1,4,2],X[2,4,1,3]]; //
bracket[n_]:=a^n-a^(-n); //
bracket[n_]:=a^n-a^(-n); //
bracketFact[n_]:=Product[bracket[i],{i,1,n}]; //
bracketFact[n_]:=Product[bracket[i],{i,1,n}]; //
lambda[n_] := A^(2*n + 2) + A^(-2*n - 2); //
R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}]; //
R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}]; //
cheb[0, z_] = 1;
cheb[0, z_] = 1;
Line 16: Line 17:
bracket[n_]:=a^n-a^(-n);
bracket[n_]:=a^n-a^(-n);
bracketFact[n_]:=Product[bracket[i],{i,1,n}];
bracketFact[n_]:=Product[bracket[i],{i,1,n}];
lambda[n_] := A^(2*n + 2) + A^(-2*n - 2);
R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}];
R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}];
cheb[0, z_] = 1;
cheb[0, z_] = 1;
Line 48: Line 50:
R[Subscript[z, 1], 2]*cheb[4, Subscript[z, 2]], {1, 3}, {Subscript[
R[Subscript[z, 1], 2]*cheb[4, Subscript[z, 2]], {1, 3}, {Subscript[
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}]
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}]
Expand[(-1)^1*bracketFact[3]/bracket[1]]</nowiki> |
Expand[(-1)^2*bracketFact[5]/bracket[1]]</nowiki> |
out= <nowiki>2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14
out= <nowiki>2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14
2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14</nowiki>}}
2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14</nowiki>}}
<!--END-->
<!--END-->

{{note|Masbaum}} Masbaum, Gregor. ''Skein-theoretical derivations of some formulas of Habiro.'' Alg. and Geo. Topology 3 (2003): 537–556. https://doi.org/10.2140/agt.2003.3.537

Latest revision as of 19:05, 5 August 2025

CableLink[link,poly,strandList,vars], whose code is available here, computes the Kauffman bracket of link (given as a PD) with components L1,L2,...,Ln, cabled by the polynomial poly in the variables z1,z2,...,zn. strandList is a list of strand labels of length n, where the ith element is the first strand label corresponding to component Li. As an example, we can verify some formulas from [Masbaum], after importing KnotTheory` and the CableLink code:

In[3]:= hopfLink=PD[X[3,1,4,2],X[2,4,1,3]]; bracket[n_]:=a^n-a^(-n); bracketFact[n_]:=Product[bracket[i],{i,1,n}]; lambda[n_] := A^(2*n + 2) + A^(-2*n - 2); R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}]; cheb[0, z_] = 1; cheb[1, z_] = z; cheb[n_, z_] := cheb[n, z] = z*cheb[n - 1, z] - cheb[n - 2, z];
In[4]:= Expand[CableLink[hopfLink, R[Subscript[z, 1], 1]*cheb[2, Subscript[z, 2]], {1, 3}, {Subscript[ z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}] Expand[(-1)^1*bracketFact[3]/bracket[1]]
Out[4]= -1/a^5 + 1/a + a - a^5 -1/a^5 + 1/a + a - a^5
In[5]:= Expand[CableLink[hopfLink, R[Subscript[z, 1], 2]*cheb[4, Subscript[z, 2]], {1, 3}, {Subscript[ z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}] Expand[(-1)^2*bracketFact[5]/bracket[1]]
Out[5]= 2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14 2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14

[Masbaum] ^  Masbaum, Gregor. Skein-theoretical derivations of some formulas of Habiro. Alg. and Geo. Topology 3 (2003): 537–556. https://doi.org/10.2140/agt.2003.3.537